Variedade (xeometría)

Na Galipedia, a Wikipedia en galego.
Saltar ata a navegación Saltar á procura
Nunha esfera, a suma dos ángulos dun triángulo non é igual a 180°, pois a superficie dunha esfera non é un espazo euclidiano. Porén, localmente, as leis da xeometría euclidiana son boas aproximacións. Este exemplo ilustra como a esfera pode representarse por unha colección de mapas bidimensionais. A esfera é, polo tanto, unha variedade, en concreto, unha variedade riemanniana.

Nas matemáticas, unha variedade é o obxecto xeométrico que xeneraliza a noción intuitiva de curva (1-variedade) e de superficie (2-variedade) a calquera dimensión e sobre corpos diversos (non necesariamente o dos reais); máis formalmente, pódese dicir que unha variedade de dimensión n es un espazo que se parece localmente a .

Hai varios tipos de variedades, de acordo coas propiedades que posúen. As mais usuais son as variedades topolóxicas e as variedades diferenciábeis. As variedades son de interese no estudo da xeometría, da topoloxía, e da análise.

Motivación[editar | editar a fonte]

Considérese a opinión de que a Terra é plana en contraste coa evidencia moderna de que é aproximadamente esférica. A discrepancia vén esencialmente do feito de que nas escalas pequenas que vemos a terra parecer ser plana. Xeneralizando, calquera obxecto que sexa case "plano" en escalas pequenas é unha variedade. As variedades constitúen unha xeneralización dos obxectos que poden ser considerados planos, arredor dun punto dado.

Construción xeral[editar | editar a fonte]

Catro cartas dun círculo.

A idea xeral común aos varios tipos de variedades consiste na descomposición dun conxunto en varios anacos do mesmo tipo, de modo que estes anacos se xunten ben.

Formalmente, considérese un espazo topolóxico e un grupo de homeomorfismos de abertos de . Unha variedade modelada no par é un espazo topolóxico dotado dun conxunto de homeomorfismos , onde e son abertos de e , respectivamente tales que:

  • se , entón

Cada función é chamada unha carta, e a colección de todas as cartas chámase atlas.

Clases de variedades[editar | editar a fonte]

A lemniscata (coa topoloxía herdada do plano) non é unha variedade, pois na veciñanza do punto dobre parécese a unha cruz.

Existen diversas variantes, empregadas segundo o dominio particular considerado:

  • Variedades diferenciábeis: son como as superficies lisas (sen puntos angulosos) e xeralmente reais. Nelas pódense definir en calquera punto vectores (ou planos) tanxentes; empréganse na teoría dos grupos de Lie o cálculo diferencial sobre espazos topolóxicos máis xerais (que se empregan por exemplo en mecánica). Unha variedade diferenciábel é unha xeneralización dunha variedade topolóxica que traduce a idea de diferenciabilidade. É unha variedade modelada no par , onde é o conxunto dos difeomorfismos de .
  • Variedades alxébricas: son curvas ou superficies definidas como raíces de polinomios de varias variábeis xeralmente complexas;
  • Variedades aritméticas: son casos particulares de variedades alxébricas, máis especializadas, para as aplicacións orientadas á teoría de números. O cuerpo de referencia é o dos números racionais, ou unha das súas extensións.
  • Unha variedade topolóxica é unha variedade modelada no par , onde é o conxunto dos homeomorfismos de . Noutras palabras, unha variedade topolóxica é un espazo topolóxico que localmente é similar a un espazo euclidiano.
  • Na xeometría de Riemann, unha variedad de Riemann é unha variedade diferenciábel real na que cada espazo tanxente se equipa cun produto interior de xeito que varíe suavemente de punto a punto. Isto permite que se definan varias nocións métricas como lonxitude de curvas, ángulos, áreas ou volumes), curvatura, gradiente de funcións e diverxencia de campos vectoriais.

Dimensión[editar | editar a fonte]

As variedades de dimensión 1 e 2 teñen nomes especiais. Así,

  • unha variedade de dimensión 1 chámase curva;
  • unha variedade de dimensión 2 chámase superfície.

Exemplos[editar | editar a fonte]

O exemplo básico de unha variedade é o propio espazo euclidiano; moitas das súas propiedades recaen sobre as variedades. Alén diso, todo o límite plano dun subconxunto do espazo euclidiano, como o círculo ou a esfera, é unha variedade.

Véxase tamén[editar | editar a fonte]

Outros artigos[editar | editar a fonte]