Saltar ao contido

CDH1

Na Galipedia, a Wikipedia en galego.
PDB 1l7w
Cadherina 1, tipo 1
Identificadores
Símbolo CDH1
Símbolos alt. Arc-1; CD324; CDHE; ECAD; LCAM; UVO
Entrez 999
OMIM

192090

RefSeq NP_004351
UniProt P12830
Outros datos
Locus Cr. 16 :(68.74 – 68.84 Mb)

A cadherina-1 tamén chamada E-cadherina ou cadherina epitelial, ou tamén CAM 120/80, uvomorulina ou CD324 (cluster de diferenciación 324), é unha proteína que nos humanos está codificada no xene CDH1 do cromosoma 16.[1] Esta proteína funciona como unha proteína de membrana de adhesión celular. O seu xene funciona como xene supresor de tumores.[2][3]

A E-cadherina é un membro clásico da superfamilia das cadherinas. A proteína é unha glicoproteína de adhesión célula-célula dependente do calcio composta de cinco repeticións de cadherina extracelulares, unha rexión transmembrana, e unha cola citoplasmática altamente conservada. As mutacións neste xene están correlacionadas con cancros gástricos, de mama, colorrectais, de tiroide e de ovario. A perda da súa función crese que contribúe á progresión do cancro ao aumentar a proliferación, invasión (infiltración), e/ou metástase. O ectodominio (extracelular) desta proteína media a adhesión bacteriana a células de mamífero, e o dominio citoplasmático é necesario para a internalización. As variantes de transcrición identificadas orixínanse por mutacións nos sitios de empalme consenso.[4]

A E-cadherina (epitelial) é o membro mellor estudado da familia das cadherinas. Consta de 5 repeticións de cadherina (EC1 ~ EC5) no dominio extracelular, un dominio transmembrana, e un dominio intracelular que se une á p120-catenina e á beta-catenina. O dominio intracelular contén unha rexión moi fosforilada. A beta-catenina pode tamén unirse á alfa-catenina. A alfa-catenina participa na regulación dos filamentos citoesqueléticos que conteñen actina. En células epiteliais, as unións célula-célula que conteñen E-cadherina están frecuentemente situadas nas proximidades dos filamentos que conteñen actina do citoesqueleto.

A E-cadherina exprésase inicialmente no estadio de dúas células do desenvolvemento dos mamíferos, e é fosforilada no estadio de oito células, no que causa compactación. En tecidos adultos, a E-cadherina exprésase en tecidos epiteliais, onde é constantemente rexenerada cunha vida media de 5 horas na superficie celular. As interaccións célula-célula mediadas pola E-cadherina son cruciais para a formación da blástula en moitos animais.[5]

Importancia clínica

[editar | editar a fonte]

A perda da función ou expresión da E-cadherina foi implicada na progresión do cancro e a metástase.[6] A regulación á baixa da E-cadherina fai diminuír a forza da adhesión celular nun tecido, o que ten como resultado un incremento da mobilidade celular. Isto, á súa vez, pode permitir que as células cancerosas crucen a membrana basal e invadan os tecidos circundantes.[6] Os patólogos usan a E-cadherina para diagnosticar diferentes tipos de cancro de mama. Se a comparamos co carcinoma ductal mamario invasivo, a expresión da E-cadherina está marcadamente reducida ou ausente na gran maioría dos carcinomas lobulares invasivos cando se estuda por medio de inmunohistoquímica.[7]

Interaccións

[editar | editar a fonte]

A CDH1 presenta interaccións con

A E-cadherina e o cancro

[editar | editar a fonte]

A E-cadherina na metástase

[editar | editar a fonte]

As transicións entre os estados epitelial e mesenquimal exercen importantes funcións no desenvolvemento embrionario e na metástase do cancro. O nivel de E-cadherina cambia na TEM (transición epitelial-mesenquimal) e a TME (transición mesenquimal-epitelial). O xene da E-cadherina actúa como un supresor da invasión e un supresor de tumores clásicos en carcinoma de mama lobular pre-invasivo.[48]

1. A E-cadherina na TEM:

A E-cadherina é un tipo fundamental de adhesion célula-célula para manter as células epiteliais unidas firmemente. A E-cadherina pode secuestrar a β-catenina na membrana plasmática da célula, que se une pola cola citoplasmática da E-cadherina. A perda da expresión de E-cadherina ten como resultado a liberación de β-catenina no citoplasma. As moléculas de β-catenina liberadas poden migrar ao núcleo e desencadear a expresión de factores de transcrición que inducen a TEM. Xunto con outros mecanismos, como a activación de RTK constitutiva, a perda da E-cadherina pode facer que as células cancerosas pasen ao estado mesenquimal e sufran metástase. A E-cadherina é un interruptor importante na TEM.[48]

2. A E-cadherina na TME:

O estado mesenquimal das células cancerosas migran a novos sitios e poden sufrir TMEs en certos microambientes favorables. Por exemplo, as células cancerosas poden recoñecer características de células epiteliais diferenciadas nos novos sitios e regular á alza a expresión da E-cadherina. As células cancerosas poden formar adhesións célula-célula novamente e volver ao estado epitelial.[48]

Exemplos de casos de cancro

[editar | editar a fonte]
  • Inactivación de CDH1 (acompañada da perda do alelo de tipo silvestre) no 56% dos carcinomas de mama lobulares.[49][50]
  • Inactivación de CDH1 no 50% dos carcinomas de cancro difusos.[51]
  • Perda completa da expresión da proteína E-cadherina no 84% dos carcinomas de mama lobulares.[52]

Control xenético e epixenético de CDH1

[editar | editar a fonte]

Varias proteínas como SNAI1/SNAIL,[53][54] ZFHX1B/SIP1,[55] SNAI2/SLUG,[56][57] TWIST1[58] e DeltaEF1[59] regulan á baixa a expresión da E-cadherina. Cando a expresión destes factores de transcrición está alterada, os represores transcricionais da E-cadherina sobreexprésanse en células tumorais.[53][54][55][56][58][59] Outro grupo de xenes, como AML1, p300 e HNF3,[60] poden regular á alza a expresión da E-cadherina.[61]

Para estudar a regulación epixenética da E-cadherina, M. Lombaerts et al. realizaron un estudo de expresión de todo o xenoma en 27 liñas celulares mamarias humanas. Os seus resultados revelaron dous grupos ou clusters principais que teñen fenotipo fibroblástico ou epitelial, respectivamente. Nun exame en detalle, os grupos que mostraban fenotipos de fibroblasto só tiñan unha metilación do promotor de CDH1 parcial ou completa, mentres que os grupos con fenotipos epiteliais comprendían tanto liñas celulares de tipo silvestre coma liñas mutantes. Os autores tamén atoparon que a TEM pode ocorrer en liñas celulares de cancro de mama con hipermetilación do promotor de CDH1, pero nas liñas celulares de cancro de mama cunha inactivación mutacional de CDH1 non se producía a TEM. Isto contradí a hipótese de que a perda da E-cadherin é a causa inicial ou primaria da TEM. En conclusión, o resultado suxire que a “inactivación transcricional da E-cadherina é un epifenómeno e parte dun programa completo, con efectos moito máis graves que a soa perda da expresión de E-cadherina”.[61]

Outros estudos mostraron tamén que a regulación epixenética da expresión de E-cadherina ocorre durante a metástase. Os patróns de metilación da illa 5' CpG da E-cadherina non son estables. Durante a progresión da metástase de moitos casos de tumores epiteliais, obsérvase unha perda transitoria da E-cadherina e a perda heteroxénea da expresión de E-cadherina é o resultado dun patrón heteroxéneo de metilación da rexión promotora do xene da E-cadherina.[62]

  1. Huntsman DG, Caldas C (Mar 1999). "Assignment1 of the E-cadherin gene (CDH1) to chromosome 16q22.1 by radiation hybrid mapping". Cytogenet Cell Genet 83 (1-2): 82–3. PMID 9925936. doi:10.1159/000015134. 
  2. Semb H, Christofori G (December 1998). "The tumor-suppressor function of E-cadherin". Am. J. Hum. Genet. 63 (6): 1588–93. PMC 1377629. PMID 9837810. doi:10.1086/302173. 
  3. Wong AS, Gumbiner BM (June 2003). "Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin". J. Cell Biol. 161 (6): 1191–203. PMC 2173007. PMID 12810698. doi:10.1083/jcb.200212033. 
  4. "Entrez Gene: CDH1 cadherin 1, type 1, E-cadherin (epithelial)". 
  5. Fleming TP, Papenbrock T, Fesenko I, Hausen P, Sheth B (August 2000). "Assembly of tight junctions during early vertebrate development". Semin. Cell Dev. Biol. 11 (4): 291–9. PMID 10966863. doi:10.1006/scdb.2000.0179. 
  6. 6,0 6,1 Weinberg, Robert (2006). The Biology of Cancer. Garland Science. pp. 864 pages. ISBN 9780815340782. Arquivado dende o orixinal o 11 de setembro de 2015. Consultado o 29 de agosto de 2015. 
  7. Rosen, P. Rosen's Breast Pathology, 3rd ed, 2009, p. 704. Lippincott Williams & Wilkins.
  8. Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, Sommer T, Birchmeier W (2002). "Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex". Nature Cell Biology 4 (3): 222–231. PMID 11836526. doi:10.1038/ncb758. 
  9. Vodermaier HC, Gieffers C, Maurer-Stroh S, Eisenhaber F, Peters JM (September 2003). "TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1". Curr. Biol. 13 (17): 1459–68. PMID 12956947. doi:10.1016/S0960-9822(03)00581-5. 
  10. 10,0 10,1 Kang JS, Feinleib JL, Knox S, Ketteringham MA, Krauss RS (April 2003). "Promyogenic members of the Ig and cadherin families associate to positively regulate differentiation". Proc. Natl. Acad. Sci. U.S.A. 100 (7): 3989–94. PMC 153035. PMID 12634428. doi:10.1073/pnas.0736565100. 
  11. Klingelhöfer J, Troyanovsky RB, Laur OY, Troyanovsky S (August 2000). "Amino-terminal domain of classic cadherins determines the specificity of the adhesive interactions". J. Cell. Sci. 113 (16): 2829–36. PMID 10910767. 
  12. Daniel JM, Reynolds AB (September 1995). "The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or alpha-catenin". Mol. Cell. Biol. 15 (9): 4819–24. PMC 230726. PMID 7651399. 
  13. Ireton RC, Davis MA, van Hengel J, Mariner DJ, Barnes K, Thoreson MA, Anastasiadis PZ, Matrisian L, Bundy LM, Sealy L, Gilbert B, van Roy F, Reynolds AB (November 2002). "A novel role for p120 catenin in E-cadherin function". J. Cell Biol. 159 (3): 465–76. PMC 2173073. PMID 12427869. doi:10.1083/jcb.200205115. 
  14. 14,0 14,1 14,2 14,3 Kinch MS, Clark GJ, Der CJ, Burridge K (July 1995). "Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia". J. Cell Biol. 130 (2): 461–71. PMC 2199929. PMID 7542250. doi:10.1083/jcb.130.2.461. 
  15. 15,0 15,1 15,2 15,3 Hazan RB, Norton L (April 1998). "The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton". J. Biol. Chem. 273 (15): 9078–84. PMID 9535896. doi:10.1074/jbc.273.15.9078. 
  16. Bonné S, Gilbert B, Hatzfeld M, Chen X, Green KJ, van Roy F (April 2003). "Defining desmosomal plakophilin-3 interactions". J. Cell Biol. 161 (2): 403–16. PMC 2172904. PMID 12707304. doi:10.1083/jcb.200303036. 
  17. 17,0 17,1 17,2 Piedra J, Miravet S, Castaño J, Pálmer HG, Heisterkamp N, García de Herreros A, Duñach M (April 2003). "p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin Interaction". Mol. Cell. Biol. 23 (7): 2287–97. PMC 150740. PMID 12640114. doi:10.1128/MCB.23.7.2287-2297.2003. 
  18. 18,0 18,1 Shibamoto S, Hayakawa M, Takeuchi K, Hori T, Miyazawa K, Kitamura N, Johnson KR, Wheelock MJ, Matsuyoshi N, Takeichi M (March 1995). "Association of p120, a tyrosine kinase substrate, with E-cadherin/catenin complexes". J. Cell Biol. 128 (5): 949–57. PMC 2120395. PMID 7876318. doi:10.1083/jcb.128.5.949. 
  19. Ohkubo T, Ozawa M (July 1999). "p120(ctn) binds to the membrane-proximal region of the E-cadherin cytoplasmic domain and is involved in modulation of adhesion activity". J. Biol. Chem. 274 (30): 21409–15. PMID 10409703. doi:10.1074/jbc.274.30.21409. 
  20. Davies G, Jiang WG, Mason MD (April 2001). "HGF/SF modifies the interaction between its receptor c-Met, and the E-cadherin/catenin complex in prostate cancer cells". Int. J. Mol. Med. 7 (4): 385–8. PMID 11254878. doi:10.3892/ijmm.7.4.385. 
  21. Kucerová D, Sloncová E, Tuhácková Z, Vojtechová M, Sovová V (December 2001). "Expression and interaction of different catenins in colorectal carcinoma cells". Int. J. Mol. Med. 8 (6): 695–8. PMID 11712088. doi:10.3892/ijmm.8.6.695. 
  22. Oyama T, Kanai Y, Ochiai A, Akimoto S, Oda T, Yanagihara K, Nagafuchi A, Tsukita S, Shibamoto S, Ito F (December 1994). "A truncated beta-catenin disrupts the interaction between E-cadherin and alpha-catenin: a cause of loss of intercellular adhesiveness in human cancer cell lines". Cancer Res. 54 (23): 6282–7. PMID 7954478. 
  23. 23,0 23,1 Hazan RB, Kang L, Roe S, Borgen PI, Rimm DL (December 1997). "Vinculin is associated with the E-cadherin adhesion complex". J. Biol. Chem. 272 (51): 32448–53. PMID 9405455. doi:10.1074/jbc.272.51.32448. 
  24. Jiang MC, Liao CF, Tai CC (June 2002). "CAS/CSE 1 stimulates E-cadhrin-dependent cell polarity in HT-29 human colon epithelial cells". Biochem. Biophys. Res. Commun. 294 (4): 900–5. PMID 12061792. doi:10.1016/S0006-291X(02)00551-X. 
  25. Bonvini P, An WG, Rosolen A, Nguyen P, Trepel J, Garcia de Herreros A, Dunach M, Neckers LM (February 2001). "Geldanamycin abrogates ErbB2 association with proteasome-resistant beta-catenin in melanoma cells, increases beta-catenin-E-cadherin association, and decreases beta-catenin-sensitive transcription". Cancer Res. 61 (4): 1671–7. PMID 11245482. 
  26. Li Y, Bharti A, Chen D, Gong J, Kufe D (December 1998). "Interaction of glycogen synthase kinase 3beta with the DF3/MUC1 carcinoma-associated antigen and beta-catenin". Mol. Cell. Biol. 18 (12): 7216–24. PMC 109303. PMID 9819408. 
  27. Wendeler MW, Praus M, Jung R, Hecking M, Metzig C, Gessner R (April 2004). "Ksp-cadherin is a functional cell-cell adhesion molecule related to LI-cadherin". Exp. Cell Res. 294 (2): 345–55. PMID 15023525. doi:10.1016/j.yexcr.2003.11.022. 
  28. Shibata T, Chuma M, Kokubu A, Sakamoto M, Hirohashi S (July 2003). "EBP50, a beta-catenin-associating protein, enhances Wnt signaling and is over-expressed in hepatocellular carcinoma". Hepatology 38 (1): 178–86. PMID 12830000. doi:10.1053/jhep.2003.50270. 
  29. 29,0 29,1 Oneyama C, Nakano H, Sharma SV (March 2002). "UCS15A, a novel small molecule, SH3 domain-mediated protein-protein interaction blocking drug". Oncogene 21 (13): 2037–50. PMID 11960376. doi:10.1038/sj.onc.1205271. 
  30. 30,0 30,1 Navarro P, Lozano E, Cano A (August 1993). "Expression of E- or P-cadherin is not sufficient to modify the morphology and the tumorigenic behavior of murine spindle carcinoma cells. Possible involvement of plakoglobin". J. Cell. Sci. 105 (4): 923–34. PMID 8227214. 
  31. 31,0 31,1 Takahashi K, Suzuki K, Tsukatani Y (July 1997). "Induction of tyrosine phosphorylation and association of beta-catenin with EGF receptor upon tryptic digestion of quiescent cells at confluence". Oncogene 15 (1): 71–8. PMID 9233779. doi:10.1038/sj.onc.1201160. 
  32. Dobrosotskaya IY, James GL (April 2000). "MAGI-1 interacts with beta-catenin and is associated with cell-cell adhesion structures". Biochem. Biophys. Res. Commun. 270 (3): 903–9. PMID 10772923. doi:10.1006/bbrc.2000.2471. 
  33. Geng L, Burrow CR, Li HP, Wilson PD (December 2000). "Modification of the composition of polycystin-1 multiprotein complexes by calcium and tyrosine phosphorylation". Biochim. Biophys. Acta 1535 (1): 21–35. PMID 11113628. doi:10.1016/S0925-4439(00)00079-X. 
  34. Rao RK, Basuroy S, Rao VU, Karnaky Jr KJ, Gupta A (December 2002). "Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress". Biochem. J. 368 (Pt 2): 471–81. PMC 1222996. PMID 12169098. doi:10.1042/BJ20011804. 
  35. Huber AH, Weis WI (May 2001). "The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin". Cell 105 (3): 391–402. PMID 11348595. doi:10.1016/S0092-8674(01)00330-0. 
  36. 36,0 36,1 Schmeiser K, Grand RJ (April 1999). "The fate of E- and P-cadherin during the early stages of apoptosis". Cell Death Differ. 6 (4): 377–86. PMID 10381631. doi:10.1038/sj.cdd.4400504. 
  37. Pai R, Dunlap D, Qing J, Mohtashemi I, Hotzel K, French DM (July 2008). "Inhibition of fibroblast growth factor 19 reduces tumor growth by modulating beta-catenin signaling". Cancer Res. 68 (13): 5086–95. PMID 18593907. doi:10.1158/0008-5472.CAN-07-2325. 
  38. Laoukili J, Alvarez-Fernandez M, Stahl M, Medema RH (September 2008). "FoxM1 is degraded at mitotic exit in a Cdh1-dependent manner". Cell Cycle 7 (17): 2720–6. PMID 18758239. doi:10.4161/cc.7.17.6580. 
  39. 39,0 39,1 Yoon YM, Baek KH, Jeong SJ, Shin HJ, Ha GH, Jeon AH, Hwang SG, Chun JS, Lee CW (September 2004). "WD repeat-containing mitotic checkpoint proteins act as transcriptional repressors during interphase". FEBS Lett. 575 (1-3): 23–9. PMID 15388328. doi:10.1016/j.febslet.2004.07.089. 
  40. Li Z, Kim SH, Higgins JM, Brenner MB, Sacks DB (December 1999). "IQGAP1 and calmodulin modulate E-cadherin function". J. Biol. Chem. 274 (53): 37885–92. PMID 10608854. doi:10.1074/jbc.274.53.37885. 
  41. Nourry C, Maksumova L, Pang M, Liu X, Wang T (May 2004). "Direct interaction between Smad3, APC10, CDH1 and HEF1 in proteasomal degradation of HEF1". BMC Cell Biol. 5 (1): 20. PMC 420458. PMID 15144564. doi:10.1186/1471-2121-5-20. 
  42. Shibata T, Gotoh M, Ochiai A, Hirohashi S (August 1994). "Association of plakoglobin with APC, a tumor suppressor gene product, and its regulation by tyrosine phosphorylation". Biochem. Biophys. Res. Commun. 203 (1): 519–22. PMID 8074697. doi:10.1006/bbrc.1994.2213. 
  43. Hinck L, Näthke IS, Papkoff J, Nelson WJ (June 1994). "Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly". J. Cell Biol. 125 (6): 1327–40. PMC 2290923. PMID 8207061. doi:10.1083/jcb.125.6.1327. 
  44. Knudsen KA, Wheelock MJ (August 1992). "Plakoglobin, or an 83-kD homologue distinct from beta-catenin, interacts with E-cadherin and N-cadherin". J. Cell Biol. 118 (3): 671–9. PMC 2289540. PMID 1639850. doi:10.1083/jcb.118.3.671. 
  45. Brady-Kalnay SM, Rimm DL, Tonks NK (1995). "Receptor protein tyrosine phosphatase PTPmu associates with cadherins and catenins in vivo.". J Cell Biol 130 (4): 977–86. PMC 2199947. PMID 7642713. doi:10.1083/jcb.130.4.977. 
  46. Brady-Kalnay SM, Mourton T, Nixon JP, Pietz GE, Kinch M, Chen H; et al. (1998). "Dynamic interaction of PTPmu with multiple cadherins in vivo.". J Cell Biol 141 (1): 287–96. PMC 2132733. PMID 9531566. doi:10.1083/jcb.141.1.287. 
  47. Besco JA, Hooft van Huijsduijnen R, Frostholm A, Rotter A (2006). "Intracellular substrates of brain-enriched receptor protein tyrosine phosphatase rho (RPTPrho/PTPRT).". Brain Res 1116 (1): 50–7. PMID 16973135. doi:10.1016/j.brainres.2006.07.122. 
  48. 48,0 48,1 48,2 Weinberg, Robert A. (April 2009). "Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits". Nat Rev Cancer 9 (4): 265–273. PMID 19262571. doi:10.1038/nrc2620. 
  49. G Berx; et al. (December 1995). "E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis". EMBO J. 14 (24): 6107–6115. PMC 394735. PMID 8557030. 
  50. G Berx; et al. (November 1996). "E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain.". Oncogene 13 (9): 1919–1925. PMID 8934538. 
  51. Becker KF; et al. (November 1994). "E-cadherin gene mutations provide clues to diffuse type gastric carcinomas.". Cancer Res 54 (14): 3845–3852. PMID 8033105. 
  52. De Leeuw WJ; et al. (December 1997). "Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ.". J Pathol. 183 (4): 404–411. PMID 9496256. doi:10.1002/(SICI)1096-9896(199712)183:4404::AID-PATH11483.0.CO;2-9. 
  53. 53,0 53,1 De Leeuw WJ; et al. (February 2000). "The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells.". Nat Cell Biol 2 (2): 84–89. PMID 10655587. doi:10.1038/35000034. 
  54. 54,0 54,1 Cano A; et al. (February 2000). "The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression.". Nat Cell Biol 2 (2): 76–83. PMID 10655586. doi:10.1038/35000025. 
  55. 55,0 55,1 Comijn J; et al. (June 2001). "The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion.". Mol Cell 7 (6): 1267–1278. PMID 11430829. doi:10.1016/S1097-2765(01)00260-X. 
  56. 56,0 56,1 Hajra KM; et al. (March 2002). "The SLUG zinc-finger protein represses E-cadherin in breast cancer.". Cancer Res 62 (6): 1613–1618. PMID 11912130. 
  57. De Craene B; et al. (July 2005). "The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program.". Cancer Res. 65 (14): 6237–6244. PMID 16024625. doi:10.1158/0008-5472.CAN-04-3545. 
  58. 58,0 58,1 Yang J; et al. (June 2004). "Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis.". Cell 117 (7): 927–939. PMID 15210113. doi:10.1016/j.cell.2004.06.006. 
  59. 59,0 59,1 Eger A; et al. (Mar 2005). "DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells.". Oncogene 24 (14): 2375–85. PMID 15674322. doi:10.1038/sj.onc.1208429. 
  60. Liu YN; et al. (Dec 2005). "Regulatory mechanisms controlling human E-cadherin gene expression.". Oncogene 24 (56): 8277–90. PMID 16116478. doi:10.1038/sj.onc.1208991. 
  61. 61,0 61,1 Lombaerts M; et al. (Mar 2006). "E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines.". Br J Cancer 94 (5): 661–71. PMID 16495925. doi:10.1038/sj.bjc.6602996. 
  62. Graff JR; et al. (Jan 2000). "Methylation patterns of the E-cadherin 5' CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression.". J Biol Chem 275 (4): 2727–32. PMID 10644736. doi:10.1074/jbc.275.4.2727. 

Véxase tamén

[editar | editar a fonte]

Bibliografía

[editar | editar a fonte]

Ligazóns externas

[editar | editar a fonte]
Este artigo incorpora textos en dominio público da United States National Library of Medicine.