Meganisópteros
Meganisópteros Rango fósil: 318-251 Ma (Pensilvaniense - Lopingiano) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Meganeura sp. | |||||||||||
Clasificación científica | |||||||||||
| |||||||||||
Familias | |||||||||||
Sinonimia | |||||||||||
|
Os maganisópteros (Meganisoptera) son unha orde de insectos extinguida con especies de tamaño moi grande ou xigante. Anteriormente esta orde chamábase Protodonata (protodonatos), pola súa aparencia similar e suposto parentesco cos modernos Odonata (libélulas). Viviron no Paleozoico desde o Carbonífero tardío ao Permiano tardío. Aínda que a maioría eran só lixeiramente máis grandes que as libélulas modernas, algunhas especies da orde son os insectos máis grandes coñecidos, como os fósiles do Carbonífero tardío Meganeura monyi e Megatypus, e a aínda máis grande do Permiano temperán Meganeuropsis permiana, que tiña envergaduras alares de ata 71 cm.[1]
As ás anteriores e posteriores son similares en venación (unha característica primitiva) agás na área anal máis grande (cara a atrás) nas ás posteriores. As ás anteriores son normalmente máis delgadas e lixeiramente máis longas que as posteriores. A diferenza das verdadeiras libélulas (Odonata), non tiñan pterostigma, e o patrón de veas das ás era algo máis simple.
A maioría dos espécimes coñécense só por fragmentos de ás; e só unhas poucas son ás completas, e moi poucas (na familia Meganeuridae) teñen impresións dos corpos. Estes mostran unha cabeza globosa con grandes mandíbulas dentadas, fortes patas espiñosas, un tórax grande, e un abdome longo e delgado como o das libélulas. Igual que as verdadeiras libélulas, eran presumiblemente predadores.
Tamén se coñecen unhas poucas ninfas fósiles, que mostran pezas bucais similares ás das ninfas de libélulas modernas, o que indica que eran predadores acuáticos activos.[3]
Aínda que ás veces se inclúen dentro das libélulas, os protodonatos (meganisópteros) carecen de certas características distintivas das ás que caracterizan aos odonatos. David Grimaldi e Michael S. Engel, indicaron que o termo coloquial "libélula xigante" é equívoco e sería mellor chamarlles "moscas grifón" ("griffinfly").
Tamaño
[editar | editar a fonte]Discutiuse moito por que os insectos do Carbonífero puideron crecer tanto. A maneira na que se difunde o oxíxeno a través do corpo dun insecto polo seu sistema respiratorio traqueal supón que haxa un límite superior para o seu tamaño, que os insectos prehistóricos parece que superaron. Propúxose inicialmente (Harlé & Harlé, 1911) que Meganeura podía facer o esforzo de voar porque a atmosfera naquel tempo contiña máis oxíxeno que o 20% da actual atmosfera. Esta teoría foi rexeitada polos científicos daquela época, pero encontrou a aprobación de científicos recentes que estudaron máis en detalle as relacións do xigantismo e a dispoñibilidade de oxíxeno.[4] Se esta teoría é correcta, estes insectos serían susceptibles a unha caída dos niveis de oxíxeno e non poderían vivir nunha atmosfera coma a actual. Outros investigadores indican que os insectos realmente respiran con "rápidos ciclos de compresión e expansión traqueal".[5] Análises recentes da enerxética do voo de insectos e aves modernos suxire que tanto o nivel de oxíxeno coma a densidade do aire dan a posibilidade dun salto no tamaño.[6]
Un problema xeral con todas as explicacións relacionadas co oxíxeno das libélulas xigantes é a circunstancia de que os grandes Meganeuridae cunha envergadura alar de 45 cm tamén viviron no Permiano superior de Lodève en Francia, cando o contido de oxíxeno da atmosfera era xa moito máis baixo que no Carbonífero e no Permiano inferior.[7]
Bechly (2004) suxeriu que a falta de predadores vertebrados aéreos permitiulles aos insectos pterigotos evolucionar a tamaños máximos durante os períodos Carbonífero e Permiano, proceso que talvez foi acelerado por unha "carreira de armamentos evolutiva" para incrementar o tamaño corporal entre os paleodictiópteros herbívoros e os meganéuridos, que eran os seus predadores.[8]
Notas
[editar | editar a fonte]- ↑ Grimaldi & Engel 2005 p.175
- ↑ The Biology of Dragonflies. CUP Archive. p. 324. GGKEY:0Z7A1R071DD.
No Dragonfly at present existing can compare with the immense Meganeura monyi of the Upper Carboniferous, whose expanse of wing was somewhere about twenty-seven inches.
- ↑ Hoell, H.V., Doyen, J.T. & Purcell, A.H. (1998). Introduction to Insect Biology and Diversity, 2nd ed. Oxford University Press. p. 321. ISBN 0-19-510033-6.
- ↑ Gauthier Chapelle & Lloyd S. Peck (May 1999). "Polar gigantism dictated by oxygen availability". Nature 399 (6732): 114–115. doi:10.1038/20099.
A subministración de oxíxeno puido tamén levar ao xigantismo aos insectos do período Carbonífero, porque o oxíxeno atmosférico era do 30-35% (ref. 7). A desaparición destes insectos cando o contido do oxíxeno baixou indica que as grandes especies poden ser susceptibles a dito cambio. Os anfípodos xigantes poden, por tanto, ser das primeiras especies en desaparecer se a temperatura global se incrementa ou os niveis de oxíxeno globais declinan. Estar preto do límite MPS crítico pode considerarse como unha especialización que fai ás especies xigantes máis propensas á extinción no tempo xeolóxico.
- ↑ Westneat MW, Betz O, Blob RW, Fezzaa K, Cooper WJ, Lee WK (January 2003). "Tracheal respiration in insects visualized with synchrotron x-ray imaging". Science 299 (5606): 558–560. PMID 12543973. doi:10.1126/science.1078008.
Sábese que os insectos intercambian gases respiratorios no seu sistema de tubos traqueais usando a difusión ou cambios na presión interna que se producen polo movemento do corpo ou a circulación da hemolinfa. Porén, a incapacidade de ver dentro dos insectos vivos limitou a nosa comprensión dos seus mecanismos respiratorios. Nós utilizamos un raios sincrotrón para obter vídeos de raios X de insectos vivos respirando. Escaravellos, grilos, e formigas mostraron ciclos rápidos de compresión e expansión traqueal na cabeza e tórax. Os movementos corporais e a circulación da hemolinfa non poden explicar estes ciclos; por tanto, as nosas observacións demostran un mecanismo previamente descoñecido de respiración nos insectos análogo á inflación e deflación dos pulmóns dos vertebrados.
- ↑ Robert Dudley (April 1998). "Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotion performance". The Journal of Experimental Biology 201 (Pt8): 1043–1050. PMID 9510518.
Enfoques uniformistas da evolución da fisioloxía locomotora terrestre e do rendemento do voo animal presupuxeron xeralmente a constancia da composición atmosférica. Recentes datos xeofísicos e modelos teóricos suxiren que, ao contrario, tanto as concentracións de oxíxeno coma as de dióxido de carbono cambiaron drasticamente durante períodos definidos da evolución dos metazoos. A hiperoxia na atmosfera do Paleozoico tardío puido potenciar fisioloxicamente a evolución inicial da enerxética locomotora dos tetrápodos; unha atmosfera simultaneamente hiperdensa tería aumentado a produción de forza aerodinámica nos primeiros insectos voadores. Múltiples orixes históricas do voo de vertebrados tamén se correlacionan temporalmente con períodos xeolóxicos de incremento da concentración de oxíxeno e da densidade atmosférica. O xigantismo dos artrópodos e anfibios perece que foi facilitado por unha atmosfera do Carbonífero hiperóxica e foi seguidamente eliminado pola transición do Permiano tardío á hipoxia. Para os organismos existentes, os efectos transitorios, crónicos e ontoxenéticos da exposición a mesturas de gases hiperóxicas compréndense mal en comparación coa comprensión contemporánea da fisioloxía da deprivación de oxíxeno. Experimentalmente, os efectos biomecánicos e fisiolóxicos da hiperoxia no rendemento do voo animal poden ser desacoplados polo uso de mesturas de gas que varían en densidade e concentración de oxíxeno. Tales manipulacións permiten facer tanto simulacións paleofisiolóxicas do rendemento locomotor ancestral coma unha análise da capacidade máxima de voo en formas existentes.
- ↑ Gand, G.; Nel, A. N.; Fleck, G.; Garrouste, R. (2008-01-01). "The Odonatoptera of the Late Permian Lodève Basin (Insecta)". Journal of Iberian Geology (en castelán) 34 (1): 115–122. ISSN 1886-7995.
- ↑ Bechly G. (2004): Evolution and systematics. pp. 7-16 in: Hutchins M., Evans A.V., Garrison R.W. and Schlager N. (eds): Grzimek's Animal Life Encyclopedia. 2nd Edition. Volume 3, Insects. 472 pp. Gale Group, Farmington Hills, MI PDF Arquivado 23 de setembro de 2015 en Wayback Machine.
Véxase tamén
[editar | editar a fonte]Wikimedia Commons ten máis contidos multimedia na categoría: Meganisópteros |
Wikispecies posúe unha páxina sobre: Meganisópteros |
Bibliografía
[editar | editar a fonte]- Carpenter, F. M. 1992. Superclass Hexapoda. Volume 3 of Part R, Arthropoda 4; Treatise on Invertebrate Paleontology, Boulder, Colorado, Geological Society of America.
- Grimaldi, David and Engel, Michael S. (2005-05-16). Evolution of the Insects. Cambridge University Press. ISBN 0-521-82149-5.
- Tasch, Paul, 1973, 1980 Paleobiology of the Invertebrates, John Wiley and Sons, p. 617
- André Nel, Günther Fleck, Romain Garrouste, Georges Gand, Jean Lapeyrie, Seth M Bybee, e Jakub Prokop (2009): Revision of Permo-Carboniferous griffenflies (Insecta: Odonatoptera: Meganisoptera) based upon new species and redescription of selected poorly known taxa from Eurasia. Palaeontographica Abteilung A, 289(4-6): 89–121.