Círculo máximo

Na Galipedia, a Wikipedia en galego.
Saltar ata a navegación Saltar á procura
Un círculo máximo divide a esfera en dous casquetes esféricos iguais chamados hemisferios.

Un círculo máximo[1] é o círculo resultante dunha sección realizada a unha esfera mediante un plano que pasa polo seu centro e a divida en dous hemisferios; a sección circular obtida ten o mesmo diámetro que a esfera.

A distancia máis curta entre dous puntos da superficie dunha esfera sempre é o arco de círculo máximo que os une.

Aplicaciones de círculos máximos[editar | editar a fonte]

Xeometría riemanniana[editar | editar a fonte]

Na xeometría riemanniana este concepto serve para ilustrar como hai espazos con puntos (os antipodais) que admiten máis dunha xeodésica contrastando o que acontece nos espazos euclidianos, en que por dous puntos escollidos arbitrariamente só pasa unha única xeodésica.

Triángulos esféricos[editar | editar a fonte]

Aplicación de círculos máximos nun triángulo esférico.

Se tres puntos da superficie esférica son unidos por arcos dun círculo máximo menores que 180 º, a figura obtida denomínase triángulo esférico. Os lados do polígono así formado exprésanse por conveniencia como ángulos con vértice o centro da esfera e non pola súa lonxitude. Este arco medido en radiáns e multiplicado polo raio da esfera é a lonxitude do arco. Nun triángulo esférico os ángulos cumpren que 180 ° <  +  +  < 540 °.

Xeografía e cartografía[editar | editar a fonte]

A traxectoria do círculo máximo dunha ruta aérea (liña vermella)
A traxectoria seguindo unha corrente en chorro (liña verde).

En xeografía e cartografía, os círculos máximos que pasan polos polos determinan as liñas de lonxitude (meridianos). Na latitude, pola contra, existe só un círculo máximo, o Ecuador terrestre. As demais latitudes están determinadas por círculos menores paralelos ao Ecuador (paralelos).

Notas[editar | editar a fonte]

  1. Masa Vázquez, Xosé M.; Fortes López, Belén (1995). Servicio de Normalización Lingüística da Universidade de Santiago de Compostela, ed. Vocabulario de Matemáticas. Santiago de Compostela. ISBN 84-8121-369-1. 

Véxase tamén[editar | editar a fonte]

Outros artigos[editar | editar a fonte]

Ligazóns externas[editar | editar a fonte]