Táboa de divisores

Na Galipedia, a Wikipedia en galego.
Saltar ata a navegación Saltar á procura
Esquema do número de divisores dos enteiros entre 1 e 1000. Os números altamente compostos aparecen en letra grosa.

Un divisor dun número enteiro n é un enteiro m para o que n/m é tamén enteiro (que necesariamente será tamén divisor de n). Por exemplo, 4 é divisor de 28 porque 28/4 = 7 (e 7 é tamén divisor de 28).

Se m é divisor de n tamén o é −m. A táboa só lista divisores positivos.

Clave da táboa[editar | editar a fonte]

A táboa seguinte dá os divisores dos números entre 1 e 1000.

  • d(n) é o número de divisores positivos de n, incluíndo 1 e n.
  • σ(n) é a súma de todos os divisores positivos de n, incluíndo 1 e n.
  • s(n) é a suma dos divisores propios de n, que non inclúen n. Polo tanto, s(n) = σ(n) − n.
n Divisores d(n) σ(n) σ(n)-n n Divisores d(n) σ(n) σ(n)-n
1 1 1 1 0- 501 1,3,167,501 4 672 171-
2 1,2 2 3 1- 502 1,2,251,502 4 756 254-
3 1,3 2 4 1- 503 1,503 2 504 1-
4 1,2,4 3 7 3- 504 1,2,3,4,6,

7,8,9,12,14,
18,21,24,28,36,
42,56,63,72,84,
126,168,252,504

24 1560 1056+
5 1,5 2 6 1- 505 1,5,101,505 4 612 107-
6 1,2,3,6 4 12 6 506 1,2,11,22,23,

46,253,506

8 864 358-
7 1,7 2 8 1- 507 1,3,13,39,169,

507

6 732 225-
8 1,2,4,8 4 15 7- 508 1,2,4,127,254,

508

6 896 388-
9 1,3,9 3 13 4- 509 1,509 2 510 1-
10 1,2,5,10 4 18 8- 510 1,2,3,5,6,

10,15,17,30,34,
51,85,102,170,255,
510

16 1296 786+
11 1,11 2 12 1- 511 1,7,73,511 4 592 81-
12 1,2,3,4,6,

12

6 28 16+ 512 1,2,4,8,16,

32,64,128,256,512

10 1023 511-
13 1,13 2 14 1- 513 1,3,9,19,27,

57,171,513

8 800 287-
14 1,2,7,14 4 24 10- 514 1,2,257,514 4 774 260-
15 1,3,5,15 4 24 9- 515 1,5,103,515 4 624 109-
16 1,2,4,8,16 5 31 15- 516 1,2,3,4,6,

12,43,86,129,172,
258,516

12 1232 716+
17 1,17 2 18 1- 517 1,11,47,517 4 576 59-
18 1,2,3,6,9,

18

6 39 21+ 518 1,2,7,14,37,

74,259,518

8 912 394-
19 1,19 2 20 1- 519 1,3,173,519 4 696 177-
20 1,2,4,5,10,

20

6 42 22+ 520 1,2,4,5,8,

10,13,20,26,40,
52,65,104,130,260,
520

16 1260 740+
21 1,3,7,21 4 32 11- 521 1,521 2 522 1-
22 1,2,11,22 4 36 14- 522 1,2,3,6,9,

18,29,58,87,174,
261,522

12 1170 648+
23 1,23 2 24 1- 523 1,523 2 524 1-
24 1,2,3,4,6,

8,12,24

8 60 36+ 524 1,2,4,131,262,

524

6 924 400-
25 1,5,25 3 31 6- 525 1,3,5,7,15,

21,25,35,75,105,
175,525

12 992 467-
26 1,2,13,26 4 42 16- 526 1,2,263,526 4 792 266-
27 1,3,9,27 4 40 13- 527 1,17,31,527 4 576 49-
28 1,2,4,7,14,

28

6 56 28 528 1,2,3,4,6,

8,11,12,16,22,
24,33,44,48,66,
88,132,176,264,528

20 1488 960+
29 1,29 2 30 1- 529 1,23,529 3 553 24-
30 1,2,3,5,6,

10,15,30

8 72 42+ 530 1,2,5,10,53,

106,265,530

8 972 442-
31 1,31 2 32 1- 531 1,3,9,59,177,

531

6 780 249-
32 1,2,4,8,16,

32

6 63 31- 532 1,2,4,7,14,

19,28,38,76,133,
266,532

12 1120 588+
33 1,3,11,33 4 48 15- 533 1,13,41,533 4 588 55-
34 1,2,17,34 4 54 20- 534 1,2,3,6,89,

178,267,534

8 1080 546+
35 1,5,7,35 4 48 13- 535 1,5,107,535 4 648 113-
36 1,2,3,4,6,

9,12,18,36

9 91 55+ 536 1,2,4,8,67,

134,268,536

8 1020 484-
37 1,37 2 38 1- 537 1,3,179,537 4 720 183-
38 1,2,19,38 4 60 22- 538 1,2,269,538 4 810 272-
39 1,3,13,39 4 56 17- 539 1,7,11,49,77,

539

6 684 145-
40 1,2,4,5,8,

10,20,40

8 90 50+ 540 1,2,3,4,5,

6,9,10,12,15,
18,20,27,30,36,
45,54,60,90,108,
135,180,270,540

24 1680 1140+
41 1,41 2 42 1- 541 1,541 2 542 1-
42 1,2,3,6,7,

14,21,42

8 96 54+ 542 1,2,271,542 4 816 274-
43 1,43 2 44 1- 543 1,3,181,543 4 728 185-
44 1,2,4,11,22,

44

6 84 40- 544 1,2,4,8,16,

17,32,34,68,136,
272,544

12 1134 590+
45 1,3,5,9,15,

45

6 78 33- 545 1,5,109,545 4 660 115-
46 1,2,23,46 4 72 26- 546 1,2,3,6,7,

13,14,21,26,39,
42,78,91,182,273,
546

16 1344 798+
47 1,47 2 48 1- 547 1,547 2 548 1-
48 1,2,3,4,6,

8,12,16,24,48

10 124 76+ 548 1,2,4,137,274,

548

6 966 418-
49 1,7,49 3 57 8- 549 1,3,9,61,183,

549

6 806 257-
50 1,2,5,10,25,

50

6 93 43- 550 1,2,5,10,11,

22,25,50,55,110,
275,550

12 1116 566+
51 1,3,17,51 4 72 21- 551 1,19,29,551 4 600 49-
52 1,2,4,13,26,

52

6 98 46- 552 1,2,3,4,6,

8,12,23,24,46,
69,92,138,184,276,
552

16 1440 888+
53 1,53 2 54 1- 553 1,7,79,553 4 640 87-
54 1,2,3,6,9,

18,27,54

8 120 66+ 554 1,2,277,554 4 834 280-
55 1,5,11,55 4 72 17- 555 1,3,5,15,37,

111,185,555

8 912 357-
56 1,2,4,7,8,

14,28,56

8 120 64+ 556 1,2,4,139,278,

556

6 980 424-
57 1,3,19,57 4 80 23- 557 1,557 2 558 1-
58 1,2,29,58 4 90 32- 558 1,2,3,6,9,

18,31,62,93,186,
279,558

12 1248 690+
59 1,59 2 60 1- 559 1,13,43,559 4 616 57-
60 1,2,3,4,5,

6,10,12,15,20,
30,60

12 168 108+ 560 1,2,4,5,7,

8,10,14,16,20,
28,35,40,56,70,
80,112,140,280,560

20 1488 928+
61 1,61 2 62 1- 561 1,3,11,17,33,

51,187,561

8 864 303-
62 1,2,31,62 4 96 34- 562 1,2,281,562 4 846 284-
63 1,3,7,9,21,

63

6 104 41- 563 1,563 2 564 1-
64 1,2,4,8,16,

32,64

7 127 63- 564 1,2,3,4,6,

12,47,94,141,188,
282,564

12 1344 780+
65 1,5,13,65 4 84 19- 565 1,5,113,565 4 684 119-
66 1,2,3,6,11,

22,33,66

8 144 78+ 566 1,2,283,566 4 852 286-
67 1,67 2 68 1- 567 1,3,7,9,21,

27,63,81,189,567

10 968 401-
68 1,2,4,17,34,

68

6 126 58- 568 1,2,4,8,71,

142,284,568

8 1080 512-
69 1,3,23,69 4 96 27- 569 1,569 2 570 1-
70 1,2,5,7,10,

14,35,70

8 144 74+ 570 1,2,3,5,6,

10,15,19,30,38,
57,95,114,190,285,
570

16 1440 870+
71 1,71 2 72 1- 571 1,571 2 572 1-
72 1,2,3,4,6,

8,9,12,18,24,
36,72

12 195 123+ 572 1,2,4,11,13,

22,26,44,52,143,
286,572

12 1176 604+
73 1,73 2 74 1- 573 1,3,191,573 4 768 195-
74 1,2,37,74 4 114 40- 574 1,2,7,14,41,

82,287,574

8 1008 434-
75 1,3,5,15,25,

75

6 124 49- 575 1,5,23,25,115,

575

6 744 169-
76 1,2,4,19,38,

76

6 140 64- 576 1,2,3,4,6,

8,9,12,16,18,
24,32,36,48,64,
72,96,144,192,288,
576

21 1651 1075+
77 1,7,11,77 4 96 19- 577 1,577 2 578 1-
78 1,2,3,6,13,

26,39,78

8 168 90+ 578 1,2,17,34,289,

578

6 921 343-
79 1,79 2 80 1- 579 1,3,193,579 4 776 197-
80 1,2,4,5,8,

10,16,20,40,80

10 186 106+ 580 1,2,4,5,10,

20,29,58,116,145,
290,580

12 1260 680+
81 1,3,9,27,81 5 121 40- 581 1,7,83,581 4 672 91-
82 1,2,41,82 4 126 44- 582 1,2,3,6,97,

194,291,582

8 1176 594+
83 1,83 2 84 1- 583 1,11,53,583 4 648 65-
84 1,2,3,4,6,

7,12,14,21,28,
42,84

12 224 140+ 584 1,2,4,8,73,

146,292,584

8 1110 526-
85 1,5,17,85 4 108 23- 585 1,3,5,9,13,

15,39,45,65,117,
195,585

12 1092 507-
86 1,2,43,86 4 132 46- 586 1,2,293,586 4 882 296-
87 1,3,29,87 4 120 33- 587 1,587 2 588 1-
88 1,2,4,8,11,

22,44,88

8 180 92+ 588 1,2,3,4,6,

7,12,14,21,28,
42,49,84,98,147,
196,294,588

18 1596 1008+
89 1,89 2 90 1- 589 1,19,31,589 4 640 51-
90 1,2,3,5,6,

9,10,15,18,30,
45,90

12 234 144+ 590 1,2,5,10,59,

118,295,590

8 1080 490-
91 1,7,13,91 4 112 21- 591 1,3,197,591 4 792 201-
92 1,2,4,23,46,

92

6 168 76- 592 1,2,4,8,16,

37,74,148,296,592

10 1178 586-
93 1,3,31,93 4 128 35- 593 1,593 2 594 1-
94 1,2,47,94 4 144 50- 594 1,2,3,6,9,

11,18,22,27,33,
54,66,99,198,297,
594

16 1440 846+
95 1,5,19,95 4 120 25- 595 1,5,7,17,35,

85,119,595

8 864 269-
96 1,2,3,4,6,

8,12,16,24,32,
48,96

12 252 156+ 596 1,2,4,149,298,

596

6 1050 454-
97 1,97 2 98 1- 597 1,3,199,597 4 800 203-
98 1,2,7,14,49,

98

6 171 73- 598 1,2,13,23,26,

46,299,598

8 1008 410-
99 1,3,9,11,33,

99

6 156 57- 599 1,599 2 600 1-
100 1,2,4,5,10,

20,25,50,100

9 217 117+ 600 1,2,3,4,5,

6,8,10,12,15,
20,24,25,30,40,
50,60,75,100,120,
150,200,300,600

24 1860 1260+
101 1,101 2 102 1- 601 1,601 2 602 1-
102 1,2,3,6,17,

34,51,102

8 216 114+ 602 1,2,7,14,43,

86,301,602

8 1056 454-
103 1,103 2 104 1- 603 1,3,9,67,201,

603

6 884 281-
104 1,2,4,8,13,

26,52,104

8 210 106+ 604 1,2,4,151,302,

604

6 1064 460-
105 1,3,5,7,15,

21,35,105

8 192 87- 605 1,5,11,55,121,

605

6 798 193-
106 1,2,53,106 4 162 56- 606 1,2,3,6,101,

202,303,606

8 1224 618+
107 1,107 2 108 1- 607 1,607 2 608 1-
108 1,2,3,4,6,

9,12,18,27,36,
54,108

12 280 172+ 608 1,2,4,8,16,

19,32,38,76,152,
304,608

12 1260 652+
109 1,109 2 110 1- 609 1,3,7,21,29,

87,203,609

8 960 351-
110 1,2,5,10,11,

22,55,110

8 216 106- 610 1,2,5,10,61,

122,305,610

8 1116 506-
111 1,3,37,111 4 152 41- 611 1,13,47,611 4 672 61-
112 1,2,4,7,8,

14,16,28,56,112

10 248 136+ 612 1,2,3,4,6,

9,12,17,18,34,
36,51,68,102,153,
204,306,612

18 1638 1026+
113 1,113 2 114 1- 613 1,613 2 614 1-
114 1,2,3,6,19,

38,57,114

8 240 126+ 614 1,2,307,614 4 924 310-
115 1,5,23,115 4 144 29- 615 1,3,5,15,41,

123,205,615

8 1008 393-
116 1,2,4,29,58,

116

6 210 94- 616 1,2,4,7,8,

11,14,22,28,44,
56,77,88,154,308,
616

16 1440 824+
117 1,3,9,13,39,

117

6 182 65- 617 1,617 2 618 1-
118 1,2,59,118 4 180 62- 618 1,2,3,6,103,

206,309,618

8 1248 630+
119 1,7,17,119 4 144 25- 619 1,619 2 620 1-
120 1,2,3,4,5,

6,8,10,12,15,
20,24,30,40,60,
120

16 360 240+ 620 1,2,4,5,10,

20,31,62,124,155,
310,620

12 1344 724+
121 1,11,121 3 133 12- 621 1,3,9,23,27,

69,207,621

8 960 339-
122 1,2,61,122 4 186 64- 622 1,2,311,622 4 936 314-
123 1,3,41,123 4 168 45- 623 1,7,89,623 4 720 97-
124 1,2,4,31,62,

124

6 224 100- 624 1,2,3,4,6,

8,12,13,16,24,
26,39,48,52,78,
104,156,208,312,624

20 1736 1112+
125 1,5,25,125 4 156 31- 625 1,5,25,125,625 5 781 156-
126 1,2,3,6,7,

9,14,18,21,42,
63,126

12 312 186+ 626 1,2,313,626 4 942 316-
127 1,127 2 128 1- 627 1,3,11,19,33,

57,209,627

8 960 333-
128 1,2,4,8,16,

32,64,128

8 255 127- 628 1,2,4,157,314,

628

6 1106 478-
129 1,3,43,129 4 176 47- 629 1,17,37,629 4 684 55-
130 1,2,5,10,13,

26,65,130

8 252 122- 630 1,2,3,5,6,

7,9,10,14,15,
18,21,30,35,42,
45,63,70,90,105,
126,210,315,630

24 1872 1242+
131 1,131 2 132 1- 631 1,631 2 632 1-
132 1,2,3,4,6,

11,12,22,33,44,
66,132

12 336 204+ 632 1,2,4,8,79,

158,316,632

8 1200 568-
133 1,7,19,133 4 160 27- 633 1,3,211,633 4 848 215-
134 1,2,67,134 4 204 70- 634 1,2,317,634 4 954 320-
135 1,3,5,9,15,

27,45,135

8 240 105- 635 1,5,127,635 4 768 133-
136 1,2,4,8,17,

34,68,136

8 270 134- 636 1,2,3,4,6,

12,53,106,159,212,
318,636

12 1512 876+
137 1,137 2 138 1- 637 1,7,13,49,91,

637

6 798 161-
138 1,2,3,6,23,

46,69,138

8 288 150+ 638 1,2,11,22,29,

58,319,638

8 1080 442-
139 1,139 2 140 1- 639 1,3,9,71,213,

639

6 936 297-
140 1,2,4,5,7,

10,14,20,28,35,
70,140

12 336 196+ 640 1,2,4,5,8,

10,16,20,32,40,
64,80,128,160,320,
640

16 1530 890+
141 1,3,47,141 4 192 51- 641 1,641 2 642 1-
142 1,2,71,142 4 216 74- 642 1,2,3,6,107,

214,321,642

8 1296 654+
143 1,11,13,143 4 168 25- 643 1,643 2 644 1-
144 1,2,3,4,6,

8,9,12,16,18,
24,36,48,72,144

15 403 259+ 644 1,2,4,7,14,

23,28,46,92,161,
322,644

12 1344 700+
145 1,5,29,145 4 180 35- 645 1,3,5,15,43,

129,215,645

8 1056 411-
146 1,2,73,146 4 222 76- 646 1,2,17,19,34,

38,323,646

8 1080 434-
147 1,3,7,21,49,

147

6 228 81- 647 1,647 2 648 1-
148 1,2,4,37,74,

148

6 266 118- 648 1,2,3,4,6,

8,9,12,18,24,
27,36,54,72,81,
108,162,216,324,648

20 1815 1167+
149 1,149 2 150 1- 649 1,11,59,649 4 720 71-
150 1,2,3,5,6,

10,15,25,30,50,
75,150

12 372 222+ 650 1,2,5,10,13,

25,26,50,65,130,
325,650

12 1302 652+
151 1,151 2 152 1- 651 1,3,7,21,31,

93,217,651

8 1024 373-
152 1,2,4,8,19,

38,76,152

8 300 148- 652 1,2,4,163,326,

652

6 1148 496-
153 1,3,9,17,51,

153

6 234 81- 653 1,653 2 654 1-
154 1,2,7,11,14,

22,77,154

8 288 134- 654 1,2,3,6,109,

218,327,654

8 1320 666+
155 1,5,31,155 4 192 37- 655 1,5,131,655 4 792 137-
156 1,2,3,4,6,

12,13,26,39,52,
78,156

12 392 236+ 656 1,2,4,8,16,

41,82,164,328,656

10 1302 646-
157 1,157 2 158 1- 657 1,3,9,73,219,

657

6 962 305-
158 1,2,79,158 4 240 82- 658 1,2,7,14,47,

94,329,658

8 1152 494-
159 1,3,53,159 4 216 57- 659 1,659 2 660 1-
160 1,2,4,5,8,

10,16,20,32,40,
80,160

12 378 218+ 660 1,2,3,4,5,

6,10,11,12,15,
20,22,30,33,44,
55,60,66,110,132,
165,220,330,660

24 2016 1356+
161 1,7,23,161 4 192 31- 661 1,661 2 662 1-
162 1,2,3,6,9,

18,27,54,81,162

10 363 201+ 662 1,2,331,662 4 996 334-
163 1,163 2 164 1- 663 1,3,13,17,39,

51,221,663

8 1008 345-
164 1,2,4,41,82,

164

6 294 130- 664 1,2,4,8,83,

166,332,664

8 1260 596-
165 1,3,5,11,15,

33,55,165

8 288 123- 665 1,5,7,19,35,

95,133,665

8 960 295-
166 1,2,83,166 4 252 86- 666 1,2,3,6,9,

18,37,74,111,222,
333,666

12 1482 816+
167 1,167 2 168 1- 667 1,23,29,667 4 720 53-
168 1,2,3,4,6,

7,8,12,14,21,
24,28,42,56,84,
168

16 480 312+ 668 1,2,4,167,334,

668

6 1176 508-
169 1,13,169 3 183 14- 669 1,3,223,669 4 896 227-
170 1,2,5,10,17,

34,85,170

8 324 154- 670 1,2,5,10,67,

134,335,670

8 1224 554-
171 1,3,9,19,57,

171

6 260 89- 671 1,11,61,671 4 744 73-
172 1,2,4,43,86,

172

6 308 136- 672 1,2,3,4,6,

7,8,12,14,16,
21,24,28,32,42,
48,56,84,96,112,
168,224,336,672

24 2016 1344+
173 1,173 2 174 1- 673 1,673 2 674 1-
174 1,2,3,6,29,

58,87,174

8 360 186+ 674 1,2,337,674 4 1014 340-
175 1,5,7,25,35,

175

6 248 73- 675 1,3,5,9,15,

25,27,45,75,135,
225,675

12 1240 565-
176 1,2,4,8,11,

16,22,44,88,176

10 372 196+ 676 1,2,4,13,26,

52,169,338,676

9 1281 605-
177 1,3,59,177 4 240 63- 677 1,677 2 678 1-
178 1,2,89,178 4 270 92- 678 1,2,3,6,113,

226,339,678

8 1368 690+
179 1,179 2 180 1- 679 1,7,97,679 4 784 105-
180 1,2,3,4,5,

6,9,10,12,15,
18,20,30,36,45,
60,90,180

18 546 366+ 680 1,2,4,5,8,

10,17,20,34,40,
68,85,136,170,340,
680

16 1620 940+
181 1,181 2 182 1- 681 1,3,227,681 4 912 231-
182 1,2,7,13,14,

26,91,182

8 336 154- 682 1,2,11,22,31,

62,341,682

8 1152 470-
183 1,3,61,183 4 248 65- 683 1,683 2 684 1-
184 1,2,4,8,23,

46,92,184

8 360 176- 684 1,2,3,4,6,

9,12,18,19,36,
38,57,76,114,171,
228,342,684

18 1820 1136+
185 1,5,37,185 4 228 43- 685 1,5,137,685 4 828 143-
186 1,2,3,6,31,

62,93,186

8 384 198+ 686 1,2,7,14,49,

98,343,686

8 1200 514-
187 1,11,17,187 4 216 29- 687 1,3,229,687 4 920 233-
188 1,2,4,47,94,

188

6 336 148- 688 1,2,4,8,16,

43,86,172,344,688

10 1364 676-
189 1,3,7,9,21,

27,63,189

8 320 131- 689 1,13,53,689 4 756 67-
190 1,2,5,10,19,

38,95,190

8 360 170- 690 1,2,3,5,6,

10,15,23,30,46,
69,115,138,230,345,
690

16 1728 1038+
191 1,191 2 192 1- 691 1,691 2 692 1-
192 1,2,3,4,6,

8,12,16,24,32,
48,64,96,192

14 508 316+ 692 1,2,4,173,346,

692

6 1218 526-
193 1,193 2 194 1- 693 1,3,7,9,11,

21,33,63,77,99,
231,693

12 1248 555-
194 1,2,97,194 4 294 100- 694 1,2,347,694 4 1044 350-
195 1,3,5,13,15,

39,65,195

8 336 141- 695 1,5,139,695 4 840 145-
196 1,2,4,7,14,

28,49,98,196

9 399 203+ 696 1,2,3,4,6,

8,12,24,29,58,
87,116,174,232,348,
696

16 1800 1104+
197 1,197 2 198 1- 697 1,17,41,697 4 756 59-
198 1,2,3,6,9,

11,18,22,33,66,
99,198

12 468 270+ 698 1,2,349,698 4 1050 352-
199 1,199 2 200 1- 699 1,3,233,699 4 936 237-
200 1,2,4,5,8,

10,20,25,40,50,
100,200

12 465 265+ 700 1,2,4,5,7,

10,14,20,25,28,
35,50,70,100,140,
175,350,700

18 1736 1036+
201 1,3,67,201 4 272 71- 701 1,701 2 702 1-
202 1,2,101,202 4 306 104- 702 1,2,3,6,9,

13,18,26,27,39,
54,78,117,234,351,
702

16 1680 978+
203 1,7,29,203 4 240 37- 703 1,19,37,703 4 760 57-
204 1,2,3,4,6,

12,17,34,51,68,
102,204

12 504 300+ 704 1,2,4,8,11,

16,22,32,44,64,
88,176,352,704

14 1524 820+
205 1,5,41,205 4 252 47- 705 1,3,5,15,47,

141,235,705

8 1152 447-
206 1,2,103,206 4 312 106- 706 1,2,353,706 4 1062 356-
207 1,3,9,23,69,

207

6 312 105- 707 1,7,101,707 4 816 109-
208 1,2,4,8,13,

16,26,52,104,208

10 434 226+ 708 1,2,3,4,6,

12,59,118,177,236,
354,708

12 1680 972+
209 1,11,19,209 4 240 31- 709 1,709 2 710 1-
210 1,2,3,5,6,

7,10,14,15,21,
30,35,42,70,105,
210

16 576 366+ 710 1,2,5,10,71,

142,355,710

8 1296 586-
211 1,211 2 212 1- 711 1,3,9,79,237,

711

6 1040 329-
212 1,2,4,53,106,

212

6 378 166- 712 1,2,4,8,89,

178,356,712

8 1350 638-
213 1,3,71,213 4 288 75- 713 1,23,31,713 4 768 55-
214 1,2,107,214 4 324 110- 714 1,2,3,6,7,

14,17,21,34,42,
51,102,119,238,357,
714

16 1728 1014+
215 1,5,43,215 4 264 49- 715 1,5,11,13,55,

65,143,715

8 1008 293-
216 1,2,3,4,6,

8,9,12,18,24,
27,36,54,72,108,
216

16 600 384+ 716 1,2,4,179,358,

716

6 1260 544-
217 1,7,31,217 4 256 39- 717 1,3,239,717 4 960 243-
218 1,2,109,218 4 330 112- 718 1,2,359,718 4 1080 362-
219 1,3,73,219 4 296 77- 719 1,719 2 720 1-
220 1,2,4,5,10,

11,20,22,44,55,
110,220

12 504 284+ 720 1,2,3,4,5,

6,8,9,10,12,
15,16,18,20,24,
30,36,40,45,48,
60,72,80,90,120,
144,180,240,360,720

30 2418 1698+
221 1,13,17,221 4 252 31- 721 1,7,103,721 4 832 111-
222 1,2,3,6,37,

74,111,222

8 456 234+ 722 1,2,19,38,361,

722

6 1143 421-
223 1,223 2 224 1- 723 1,3,241,723 4 968 245-
224 1,2,4,7,8,

14,16,28,32,56,
112,224

12 504 280+ 724 1,2,4,181,362,

724

6 1274 550-
225 1,3,5,9,15,

25,45,75,225

9 403 178- 725 1,5,25,29,145,

725

6 930 205-
226 1,2,113,226 4 342 116- 726 1,2,3,6,11,

22,33,66,121,242,
363,726

12 1596 870+
227 1,227 2 228 1- 727 1,727 2 728 1-
228 1,2,3,4,6,

12,19,38,57,76,
114,228

12 560 332+ 728 1,2,4,7,8,

13,14,26,28,52,
56,91,104,182,364,
728

16 1680 952+
229 1,229 2 230 1- 729 1,3,9,27,81,

243,729

7 1093 364-
230 1,2,5,10,23,

46,115,230

8 432 202- 730 1,2,5,10,73,

146,365,730

8 1332 602-
231 1,3,7,11,21,

33,77,231

8 384 153- 731 1,17,43,731 4 792 61-
232 1,2,4,8,29,

58,116,232

8 450 218- 732 1,2,3,4,6,

12,61,122,183,244,
366,732

12 1736 1004+
233 1,233 2 234 1- 733 1,733 2 734 1-
234 1,2,3,6,9,

13,18,26,39,78,
117,234

12 546 312+ 734 1,2,367,734 4 1104 370-
235 1,5,47,235 4 288 53- 735 1,3,5,7,15,

21,35,49,105,147,
245,735

12 1368 633-
236 1,2,4,59,118,

236

6 420 184- 736 1,2,4,8,16,

23,32,46,92,184,
368,736

12 1512 776+
237 1,3,79,237 4 320 83- 737 1,11,67,737 4 816 79-
238 1,2,7,14,17,

34,119,238

8 432 194- 738 1,2,3,6,9,

18,41,82,123,246,
369,738

12 1638 900+
239 1,239 2 240 1- 739 1,739 2 740 1-
240 1,2,3,4,5,

6,8,10,12,15,
16,20,24,30,40,
48,60,80,120,240

20 744 504+ 740 1,2,4,5,10,

20,37,74,148,185,
370,740

12 1596 856+
241 1,241 2 242 1- 741 1,3,13,19,39,

57,247,741

8 1120 379-
242 1,2,11,22,121,

242

6 399 157- 742 1,2,7,14,53,

106,371,742

8 1296 554-
243 1,3,9,27,81,

243

6 364 121- 743 1,743 2 744 1-
244 1,2,4,61,122,

244

6 434 190- 744 1,2,3,4,6,

8,12,24,31,62,
93,124,186,248,372,
744

16 1920 1176+
245 1,5,7,35,49,

245

6 342 97- 745 1,5,149,745 4 900 155-
246 1,2,3,6,41,

82,123,246

8 504 258+ 746 1,2,373,746 4 1122 376-
247 1,13,19,247 4 280 33- 747 1,3,9,83,249,

747

6 1092 345-
248 1,2,4,8,31,

62,124,248

8 480 232- 748 1,2,4,11,17,

22,34,44,68,187,
374,748

12 1512 764+
249 1,3,83,249 4 336 87- 749 1,7,107,749 4 864 115-
250 1,2,5,10,25,

50,125,250

8 468 218- 750 1,2,3,5,6,

10,15,25,30,50,
75,125,150,250,375,
750

16 1872 1122+

Observacións[editar | editar a fonte]

  • Un número é perfecto se é igual á suma dos seus divisores propios, é dicir, s(n) = n. Os únicos números perfectos entre 1 e 1000 son 6, 28 e 496.
  • Dous números son amigos se a suma dos divisores propios dun deles coincide co outro e viceversa. O concepto pode xeneralizarse a conxuntos de máis de dous números (números sociábeis). Os únicos números amigos menores que 1000 son 220 e 284.
  • Un número é defectivo se é maior cá suma do seus divisores propios, é dicir, s(n) < n.
  • Un número é abundante se é menor cá suma do seus divisores propios, é dicir, s(n) > n.
  • Un número primo só ten 1 e el mesmo como divisores, polo que d(n) = 2. Os números primos son sempre defectivos, porque s(n)=1