Ciclo do piruvato
O ciclo do piruvato xeralmente refírese aos movementos entre distintos compartimentos celulares e transformacións químicas que sofre o piruvato. Os movementos espaciais dentro da célula do piruvato ocorren entre as mitocondrias e o citosol e as transformacións químicas orixinan varios intermediarios do ciclo de Krebs. En todas as variantes, o piruvato impórtase á mitocondria para ser procesado introducindo os seus carbonos (en forma de acetil-CoA) no ciclo de Krebs. Ademais do piruvato, pode importarse tamén alfa-cetoglutarato. En varios puntos, o produto intermediario é exportado ao citosol para que sufra alí transformacións adicionais e despois reimportado. Xeralmente considéranse tres ciclos do piruvato específicos,[1] cada un denominado pola principal molécula exportada desde a mitocondria: malato, citrato, e isocitrato. Poden existir outras variantes, como os ciclos fútiles ou disipativos do piruvato.[2][3]
Este ciclo estúdase xeralmente en relación á secreción de insulina estimulada por glicosa (ou GSIS) e crese que hai unha relación entre a resposta á insulina e o NADPH producido neste ciclo,[4][5] pero os detalles específicos non están claros e existe unha certa confusión sobre o papel dos encimas málicos.[6][7] O fenómeno foi obsevada nas células dos illotes pancreáticos.
O ciclo do piruvato-malato foi descrito no fígado e preparacións de ril xa en 1971.[8]
Notas
[editar | editar a fonte]- ↑ Ronnebaum SM, Ilkayeva O, Burgess SC; et al. (2006). "A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion". The Journal of Biological Chemistry 281 (41): 30593–602. PMID 16912049. doi:10.1074/jbc.M511908200.
- ↑ Gregory RB, Berry MN (1992). "Stimulation by thyroid hormone of coupled respiration and of respiration apparently not coupled to the synthesis of ATP in rat hepatocytes". The Journal of Biological Chemistry 267 (13): 8903–8. PMID 1577728. Arquivado dende o orixinal o 28 de maio de 2020. Consultado o 09 de xaneiro de 2014.
- ↑ Agius L, Tosh D, Peak M (1993). "The contribution of pyruvate cycling to loss of 6-3Hglucose during conversion of glucose to glycogen in hepatocytes: effects of insulin, glucose and acinar origin of hepatocytes". The Biochemical Journal 289 (Pt 1): 255–62. PMC 1132158. PMID 8380985.
- ↑ Pongratz RL, Kibbey RG, Cline GW (2009). "Investigating the roles of mitochondrial and cytosolic malic enzyme in insulin secretion". Methods in Enzymology. Methods in Enzymology 457: 425–50. ISBN 978-0-12-374622-1. PMID 19426882. doi:10.1016/S0076-6879(09)05024-1.
- ↑ Guay C, Madiraju SR, Aumais A, Joly E, Prentki M (2007). "A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion". The Journal of Biological Chemistry 282 (49): 35657–65. PMID 17928289. doi:10.1074/jbc.M707294200.
- ↑ Ronnebaum SM, Jensen MV, Hohmeier HE; et al. (2008). "Silencing of Cytosolic or Mitochondrial Isoforms of Malic Enzyme Has No Effect on Glucose-stimulated Insulin Secretion from Rodent Islets". The Journal of Biological Chemistry 283 (43): 28909–17. PMC 2570884. PMID 18755687. doi:10.1074/jbc.M804665200.
- ↑ Heart E, Cline GW, Collis LP, Pongratz RL, Gray JP, Smith PJ (2009). "Role for malic enzyme, pyruvate carboxylation, and mitochondrial malate import in glucose-stimulated insulin secretion". American Journal of Physiology. Endocrinology and Metabolism 296 (6): E1354–62. PMC 2692397. PMID 19293334. doi:10.1152/ajpendo.90836.2008.
- ↑ Scaduto RC, Davis EJ (1986). "The involvement of pyruvate cycling in the metabolism of aspartate and glycerate by the perfused rat kidney". The Biochemical Journal 237 (3): 691–8. PMC 1147046. PMID 3800911.
Véxase tamén
[editar | editar a fonte]Bibliografía
[editar | editar a fonte]- Kley S, Hoenig M, Glushka J; et al. (2009). "The impact of obesity, sex, and diet on hepatic glucose production in cats". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 296 (4): R936–43. PMC 2698604. PMID 19193946. doi:10.1152/ajpregu.90771.2008.
- Li C, Nissim I, Chen P; et al. (2008). "Elimination of KATP Channels in Mouse Islets Results in Elevated U-13CGlucose Metabolism, Glutaminolysis, and Pyruvate Cycling but a Decreased γ-Aminobutyric Acid Shunt". The Journal of Biological Chemistry 283 (25): 17238–49. PMC 2427330. PMID 18445600. doi:10.1074/jbc.M709235200.
- Ronnebaum SM, Joseph JW, Ilkayeva O; et al. (2008). "Chronic Suppression of Acetyl-CoA Carboxylase 1 in β-Cells Impairs Insulin Secretion via Inhibition of Glucose Rather Than Lipid Metabolism". The Journal of Biological Chemistry 283 (21): 14248–56. PMC 2386941. PMID 18381287. doi:10.1074/jbc.M800119200.
- Burgess SC, Iizuka K, Jeoung NH; et al. (2008). "Carbohydrate-response element-binding protein deletion alters substrate utilization producing an energy-deficient liver". The Journal of Biological Chemistry 283 (3): 1670–8. PMID 18042547. doi:10.1074/jbc.M706540200.
- Jin ES, Park BH, Sherry AD, Malloy CR (2007). "Role of excess glycogenolysis in fasting hyperglycemia among pre-diabetic and diabetic Zucker (fa/fa) rats". Diabetes 56 (3): 777–85. PMID 17327448. doi:10.2337/db06-0717.
- Rajas F, Jourdan-Pineau H, Stefanutti A, Mrad EA, Iynedjian PB, Mithieux G (2007). "Immunocytochemical localization of glucose 6-phosphatase and cytosolic phosphoenolpyruvate carboxykinase in gluconeogenic tissues reveals unsuspected metabolic zonation". Histochemistry and Cell Biology 127 (5): 555–65. PMID 17211624. doi:10.1007/s00418-006-0263-5.
- Fransson U, Rosengren AH, Schuit FC, Renström E, Mulder H (2006). "Anaplerosis via pyruvate carboxylase is required for the fuel-induced rise in the ATP:ADP ratio in rat pancreatic islets". Diabetologia 49 (7): 1578–86. PMID 16752176. doi:10.1007/s00125-006-0263-y.
- Jensen MV, Joseph JW, Ilkayeva O; et al. (2006). "Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion". The Journal of Biological Chemistry 281 (31): 22342–51. PMID 16740637. doi:10.1074/jbc.M604350200.
- Jin ES, Burgess SC, Merritt ME, Sherry AD, Malloy CR (2005). "Differing mechanisms of hepatic glucose overproduction in triiodothyronine-treated rats vs. Zucker diabetic fatty rats by NMR analysis of plasma glucose". American Journal of Physiology. Endocrinology and Metabolism 288 (4): E654–62. PMID 15562253. doi:10.1152/ajpendo.00365.2004.
- Burgess SC, Hausler N, Merritt M; et al. (2004). "Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase". The Journal of Biological Chemistry 279 (47): 48941–9. PMID 15347677. doi:10.1074/jbc.M407120200.
- Thompson SN (2004). "Dietary fat mediates hyperglycemia and the glucogenic response to increased protein consumption in an insect, Manduca sexta L". Biochimica et Biophysica Acta 1673 (3): 208–16. PMID 15279893. doi:10.1016/j.bbagen.2004.05.002.
- Boucher A, Lu D, Burgess SC; et al. (2004). "Biochemical mechanism of lipid-induced impairment of glucose-stimulated insulin secretion and reversal with a malate analogue". The Journal of Biological Chemistry 279 (26): 27263–71. PMID 15073188. doi:10.1074/jbc.M401167200.
- Jin ES, Jones JG, Merritt M, Burgess SC, Malloy CR, Sherry AD (2004). "Glucose production, gluconeogenesis, and hepatic tricarboxylic acid cycle fluxes measured by nuclear magnetic resonance analysis of a single glucose derivative". Analytical Biochemistry 327 (2): 149–55. PMID 15051530. doi:10.1016/j.ab.2003.12.036.
- She P, Burgess SC, Shiota M; et al. (2003). "Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation". Diabetes 52 (7): 1649–54. PMID 12829628. doi:10.2337/diabetes.52.7.1649.
- Thompson SN, Borchardt DB, Wang LW (2003). "Dietary nutrient levels regulate protein and carbohydrate intake, gluconeogenic/glycolytic flux and blood trehalose level in the insect Manduca sexta L". Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 173 (2): 149–63. PMID 12624653. doi:10.1007/s00360-002-0322-8.
- Newgard CB, Lu D, Jensen MV; et al. (2002). "Stimulus/secretion coupling factors in glucose-stimulated insulin secretion: insights gained from a multidisciplinary approach". Diabetes. 51 Suppl 3 (90003): S389–93. PMID 12475781. doi:10.2337/diabetes.51.2007.S389.
- Thompson SN, Redak RA, Borchardt DB (2002). "The glucogenic response of a parasitized insect Manduca sexta L. is partially mediated by differential nutrient intake". Biochimica et Biophysica Acta 1571 (2): 138–50. PMID 12049794. doi:10.1016/S0304-4165(02)00208-8.
- Lu D, Mulder H, Zhao P; et al. (2002). "13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS)". Proceedings of the National Academy of Sciences of the United States of America 99 (5): 2708–13. PMC 122412. PMID 11880625. doi:10.1073/pnas.052005699.
- Thompson SN (2001). "Parasitism enhances the induction of glucogenesis by the insect, Manduca sexta L". The International Journal of Biochemistry & Cell Biology 33 (2): 163–73. PMID 11240373. doi:10.1016/S1357-2725(00)00079-0.
- Thompson SN (2000). "Pyruvate cycling and implications for regulation of gluconeogenesis in the insect, Manduca sexta L". Biochemical and Biophysical Research Communications 274 (3): 787–93. PMID 10924355. doi:10.1006/bbrc.2000.3238.
- Landau BR, Chandramouli V, Schumann WC; et al. (1995). "Estimates of Krebs cycle activity and contributions of gluconeogenesis to hepatic glucose production in fasting healthy subjects and IDDM patients". Diabetologia 38 (7): 831–8. PMID 7556986. doi:10.1007/s001250050360.
- Tosh D, Beresford G, Agius L (1994). "Glycogen synthesis from glucose by direct and indirect pathways in hepatocyte cultures from different nutritional states". Biochimica et Biophysica Acta 1224 (2): 205–12. PMID 7981234. doi:10.1016/0167-4889(94)90192-9.
- Kunz WS, Davis EJ (1991). "Control of reversible intracellular transfer of reducing potential". Archives of Biochemistry and Biophysics 284 (1): 40–6. PMID 1824912. doi:10.1016/0003-9861(91)90260-P.
- Rognstad R (1979). "Pyruvate cycling involving possible oxaloacetate decarboxylase activity". Biochimica et Biophysica Acta 586 (2): 242–9. PMID 476141. doi:10.1016/0304-4165(79)90096-5.
Ligazóns externas
[editar | editar a fonte]- "FIGURE 2: Biochemical mechanisms of glucose-stimulated insulin secretion, including roles of the pyrvuate cycling pathways of the β-cell". from Muoio, Deborah M.; Newgard, Christopher B. (2008). "Mechanisms of disease: Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes". Nature Reviews Molecular Cell Biology 9 (3): 193–205. PMID 18200017. doi:10.1038/nrm2327.