Carapucha 5'
En bioloxía molecular, a carapucha 5′,[1] carapucha 5 prima ou caparuza 5′ (moitas veces utilízase a denominación inglesa 5' cap ou 5'-cap) é un nucleótido especialmente alterado situado no extremo 5' do ARN mensaxeiro precursor e algúns outros transcritos primarios atopados en eucariotas. Tamén se pode denominar carapucha 7-metilguanosina ou carapucha m7G, carapucha G ARN m7 ou caparuza 5'. O proceso de formación da carapucha 5' é vital para crear ARNm maduro, que pode experimentar despois a súa tradución a proteínas. A formación da carapucha asegura a estabilidade do ARNm durante a tradución, e é un proceso moi regulado que ocorre no núcleo celular exclusivamente, polo que os ARNm de mitocondrias e cloroplastos non teñen carapucha 5'.[2][3]
Estrutura da carapucha 5′
[editar | editar a fonte]A carapucha 5′ encóntrase no extremo 5' dunha moécula de ARNm e consiste nunha molécula dun nucleótido con guanina unido ao ARNm por medio dun enlace 5′-5′ trifosfato pouco común. Esta guanosina é metilada in vivo no nitróxeno en posición 7 directamente despois da formación da carapucha por unha metil transferase, o que crea unha carga positiva en dito nitróxeno. Por iso tamén se denomina carapucha 7-metilguanosina ou 7-metilguanilato, abreviada m7G.
Posteriores modificacións son a posible metilación dos grupos hidroxilo 2' das dúas primeiras ribosas do extremo 5' do ARNm. A metilación de ambos os grupos hidroxilo móstrase no primeiro diagrama.
A carapucha 5′ parécese ao extremo 3' dun ARN (o carbono 5′ da ribosa da carapucha está enlazado, e o 3' non). Isto proporciónalle á molécula unha significativa resistencia ás exonucleases 5'.
As moléculas de ARNm poden perder a súa carapucha 5' nun proceso chamado "descarapuchado" do ARNm ou decapping.
Os ARNs nucleares pequenos conteñen carapuchas 5' peculiares. Os ARN nucleares pequenos da clase Sm presentan carapuchas con 5'-trimetilguanosina, mentres que os da clase Lsm teñen carapuchas con 5'-monometilfosfato.[4]
Formación da carapucha
[editar | editar a fonte]O punto de comezo para a formación da carapucha ou "carapuchado" (capping) é o extremo 5' inalterado dunha molécula de ARNm. Este presenta un nucleótido final unido a tres grupos fosfato polo carbono 5'.
- Un dos grupos fosfato terminais é eliminado por unha fosfatase terminal do ARN, o que deixa só dous fosfatos.
- Unha guanilil transferase utiliza como substrato un GTP para engadir un GMP aos devanditos dous fosfatos terminais. No proceso pérdense dous grupos fosfato procedentes do GTP, polo que o que se engade realmente é GMP. Como o GMP se uniu polo seu único fosfato aos dous grupos fosfato que xa estaban no extremo, fórmase un enlace 5′–5′ trifosfato.
- O nitróxeno en posición 7 da base nitroxenada guanina do GMP é metilado seguidamente por unha metil transferase.
- Poden producirse metilacións tamén nos nucleótidos adxacentes á carapucha, normalmente no segundo e terceiro nucleótidos. Se a segunda base desde o extremo é unha 2'-O-ribosa metil-adenosina, pode ser adicionalmente metilada na posición N6, formando N6-metiladenosina.[5] A terceira base desde o extremo é moitas veces metilada tamén (o 10-15% das veces).
Encimas implicados
[editar | editar a fonte]O complexo encimático para a adición da carapucha (Capping Enzyme Complex, CEC) necesario para a formación da carapucha está unido á ARN polimerase II antes de que empece a transcrición. Axiña que o extremo 5' do novo transcrito emerxe durante a transcrición, os encimas transfírense a el e empezan a formar a carapucha (este é un mecanismo similar ao que se produce na poliadenilación).[6][7][8][9]
Os encimas para a formación da carapucha soamente poden unirse á ARN polimerase II asegurando así a especificidade para só eses transcritos, que son case exclusivamente ARNm. [7][9]
Función da carapucha 5′
[editar | editar a fonte]A carapucha 5′ ten 4 funcións principais:
- Regulación da exportación nuclear dos ARNm.[10][11]
- Prevención da degradación por exonucleases do ARNm.[12][13][14]
- Promoción da tradución doa ARNm.)[5][15][16]
- Promoción da excisión do intrón máis próximo ao extremo 5′.[17][18]
A exportación nuclear do ARN está regulada polo complexo de unión á carapucha (cap binding complex, CBC), que se une exclusivamente aos ARN con carapucha. O CBC é recoñecido despois polo complexo dos poros nucleares e exportado. Unha vez no citoplasma despois da primeira rolda de tradución do ARNm, o CBC é substituído polos factores de transcrición eIF-4E e eIF-4G. Este complexo é despois recoñecido pola outra maquinaria de iniciación da tradución incluído o ribosoma.[19]
A carapucha 5' impide a degradación do ARN de dúas maneiras. En primeiro lugar, como se mencionou antes, impídese a degradación do ARNm polas exonucleases 5′ porque funcionalmente o extremo 5' con carapucha semella un extremo 3'. En segundo lugar, o CBC e o factor eIF-4E/eIF-4G bloquean o acceso á carapucha dos encimas que eliminan a carapucha (decapping). Isto incrementa a vida media do ARNm, esencial nos eucariotas, xa que o proceso de exportación leva bastante tempo.
A eliminación da carapucha dun ARNm está catalizada por un complexo formado por polo menos Dcp1 e Dcp2, o cal debe competir con eIF-4E para unirse á carapucha. Así, a carapucha 5' é un marcador dos ARNm en activa tradución e as células utilízano para regular as vidas medias dos ARNm en resposta a novos estímulos. Os ARNm non desexables envíanse aos corpos P para o seu almacenamento temporal ou para a eliminación da carapucha, proceso do que non se coñecen os detalles.[20]
O mecanismo da promoción da excisión do intrón proximal do extremo 5' non se comprende ben, pero a carapucha 5′ parece formar un bucle arredor do espliceosoma e interacciónar con el durante o proceso de splicing, o que promovería a excisión do intrón.
Notas
[editar | editar a fonte]- ↑ Bruce Alberts et al. Biología Molecular de la Célula. Omega. 1986. Páxina 440. ISBN 84-282-0752-6. Como comparación, esta obra é un exemplo das que o denominan (en castelán) "caperuza" (carapucha). Cap en inglés pode significar carapucha, caparucha, caparuza, gorro, tapa, tapón, remate, entre outras cousas.
- ↑ Temperley, Richard J.; Wydro, Mateusz; Lightowlers, Robert N.; Chrzanowska-Lightowlers, Zofia M. (June 2010). "Human mitochondrial mRNAs—like members of all families, similar but different". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797 (6-7): 1081–1085. doi:10.1016/j.bbabio.2010.02.036. Consultado o 12 December 2014.
- ↑ Monde, Rita A; Schuster, Gadi; Stern, David B (7 June 2000). "Processing and degradation of chloroplast mRNA". Biochimie 82 (6-7): 573–582. doi:10.1016/S0300-9084(00)00606-4. Consultado o 12 December 2014.
- ↑ Matera, A. Gregory; Terns, Rebecca M.; Terns, Michael P. (March 2007). "Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs". Nature Reviews Molecular Cell Biology 8 (3): 209–220. doi:10.1038/nrm2124. Consultado o 12 December 2014.
- ↑ 5,0 5,1 Shatkin, A (December 1976). "Capping of eucaryotic mRNAs". Cell 9 (4): 645–653. doi:10.1016/0092-8674(76)90128-8.
- ↑ Cho, E.-J.; Takagi, T.; Moore, C. R.; Buratowski, S. (15 December 1997). "mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain". Genes & Development 11 (24): 3319–3326. doi:10.1101/gad.11.24.3319. Consultado o 23 November 2014.
- ↑ 7,0 7,1 Fabrega, Carme; Shen, Vincent; Shuman, Stewart; Lima, Christopher D. (June 2003). "Structure of an mRNA Capping Enzyme Bound to the Phosphorylated Carboxy-Terminal Domain of RNA Polymerase II". Molecular Cell 11 (6): 1549–1561. doi:10.1016/S1097-2765(03)00187-4. Consultado o 23 November 2014.
- ↑ Ho, C. (15 December 1999). "An essential surface motif (WAQKW) of yeast RNA triphosphatase mediates formation of the mRNA capping enzyme complex with RNA guanylyltransferase". Nucleic Acids Research 27 (24): 4671–4678. doi:10.1093/nar/27.24.4671. Consultado o 23 November 2014.
- ↑ 9,0 9,1 Hirose, Yutaka; Manley, James L (2000). "RNA polymerase II and the integration of nuclear events". Genes & Dev 14: 1415–1429. doi:10.1101/gad.14.12.1415. Consultado o 23 November 2014.
- ↑ Visa, N.; Izaurralde, E.; Ferreira, J.; Daneholt, B.; Mattaj, I. W. (1 April 1996). "A nuclear cap-binding complex binds Balbiani ring pre-mRNA cotranscriptionally and accompanies the ribonucleoprotein particle during nuclear export". The Journal of Cell Biology 133 (1): 5–14. doi:10.1083/jcb.133.1.5. Consultado o 23 November 2014.
- ↑ Lewis, Joe D.; Izaurralde, Elisa (15 July 1997). "The Role of the Cap Structure in RNA Processing and Nuclear Export". European Journal of Biochemistry 247 (2): 461–469. doi:10.1111/j.1432-1033.1997.00461.x. Consultado o 23 November 2014.
- ↑ Evdokimova, Valentina; Ruzanov, Peter; Imataka, Hiroaki; Raught, Brian; Svitkin, Yuri; Ovchinnikov, Lev P.; Sonenberg, Nahum (1 October 2001). "The major mRNA-associated protein YB-1 is a potent 5' cap-dependent mRNA stabilizer". The EMBO Journal 20 (19): 5491–5502. doi:10.1093/emboj/20.19.5491. Consultado o 23 November 2014.
- ↑ Gao, Min; Fritz, David T.; Ford, Lance P.; Wilusz, Jeffrey (March 2000). "Interaction between a Poly(A)-Specific Ribonuclease and the 5′ Cap Influences mRNA Deadenylation Rates In Vitro". Molecular Cell 5 (3): 479–488. doi:10.1016/S1097-2765(00)80442-6. Consultado o 23 November 2014.
- ↑ Burkard, K. T. D.; Butler, J. S. (15 January 2000). "A Nuclear 3'-5' Exonuclease Involved in mRNA Degradation Interacts with Poly(A) Polymerase and the hnRNA Protein Npl3p". Molecular and Cellular Biology 20 (2): 604–616. doi:10.1128/MCB.20.2.604-616.2000. Arquivado dende o orixinal o 06 de novembro de 2018. Consultado o 23 November 2014.
- ↑ Banerjee, A K (June 1980). "5'-terminal cap structure in eucaryotic messenger ribonucleic acids". Microbiol Rev 44 (2): 175–205.
- ↑ Sonenberg, Nahum; Gingras, Anne-Claude (April 1998). "The mRNA 5′ cap-binding protein eIF4E and control of cell growth". Current Opinion in Cell Biology 10 (2): 268–275. doi:10.1016/S0955-0674(98)80150-6. [1] Arquivado 24 de setembro de 2015 en Wayback Machine.
- ↑ Konarska, Maria M.; Padgett, Richard A.; Sharp, Phillip A. (October 1984). "Recognition of cap structure in splicing in vitro of mRNA precursors". Cell 38 (3): 731–736. doi:10.1016/0092-8674(84)90268-X. Consultado o 12 December 2014.
- ↑ "Recognition of cap structure in splicing in vitro of mRNA precursors". Arquivado dende o orixinal o 22 de febreiro de 2014. Consultado o 11 de decembro de 2012.
- ↑ Kapp, L.D.; Lorsch, J.R. (2004). "The Molecular Mechanics of Eukaryotic Translation" (PDF). Annual Review of Biochemistry 73 (1): 657–704. PMID 15189156. doi:10.1146/annurev.biochem.73.030403.080419.
- ↑ Parker, R.; Sheth, U. (2007). "P Bodies and the Control of mRNA Translation and Degradation" (w). Molecular Cell 25 (5): 635–646. PMID 17349952. doi:10.1016/j.molcel.2007.02.011.
Véxase tamén
[editar | editar a fonte]Outros artigos
[editar | editar a fonte]Ligazóns externas
[editar | editar a fonte]- "RNA Caps". PubMed Medical Subject Heading (MeSH). National Institutes of Health.