As sinaptobrevinas/VAMPs, as sintaxinas e a proteína asociada ao sinaptosoma de 25 kD SNAP25 son os principais compoñentes dun complexo proteico implicado no atraque e/ou fusión de vesículas sinápticas coa membrana presináptica. A VAMP1 é un membro da familia da proteína de membrana asociada a vesículas (VAMP)/sinaptobrevina. Describíronse múltiples variantes de empalme alternativo que codifican proteínas con extremos carboxi alternativos, pero a natureza de lonxitude completa dalgunhas variantes non foi definida.[2]
As mutacións homocigóticas en VAMP1 foron identificadas nunha serie de nenos afectados por unha forma de síndrome miasténica conxénita e demostráronse características presinápticas similares nestes pacientes e nos ratos knockout para a VAMP1.[3]
↑Archer BT, Ozçelik T, Jahn R, Francke U, Südhof TC (October 1990). "Structures and chromosomal localizations of two human genes encoding synaptobrevins 1 and 2". The Journal of Biological Chemistry265 (28): 17267–73. PMID1976629.
Ravichandran V, Chawla A, Roche PA (June 1996). "Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues". The Journal of Biological Chemistry271 (23): 13300–3. PMID8663154. doi:10.1074/jbc.271.23.13300.
Nishimura Y, Hayashi M, Inada H, Tanaka T (January 1999). "Molecular cloning and characterization of mammalian homologues of vesicle-associated membrane protein-associated (VAMP-associated) proteins". Biochemical and Biophysical Research Communications254 (1): 21–6. PMID9920726. doi:10.1006/bbrc.1998.9876.
Berglund L, Hoffmann HJ, Dahl R, Petersen TE (November 1999). "VAMP-1 has a highly variable C-terminus generated by alternative splicing". Biochemical and Biophysical Research Communications264 (3): 777–80. PMID10544008. doi:10.1006/bbrc.1999.1588.
Pérez-Brangulí F, Muhaisen A, Blasi J (June 2002). "Munc 18a binding to syntaxin 1A and 1B isoforms defines its localization at the plasma membrane and blocks SNARE assembly in a three-hybrid system assay". Molecular and Cellular Neurosciences20 (2): 169–80. PMID12093152. doi:10.1006/mcne.2002.1122.
Imabayashi H, Mori T, Gojo S, Kiyono T, Sugiyama T, Irie R, Isogai T, Hata J, Toyama Y, Umezawa A (August 2003). "Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis". Experimental Cell Research288 (1): 35–50. PMID12878157. doi:10.1016/S0014-4827(03)00130-7.
Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature437 (7062): 1173–8. PMID16189514. doi:10.1038/nature04209.