Chaperonina

Na Galipedia, a Wikipedia en galego.
Saltar ata a navegación Saltar á procura

As chaperoninas son proteínas que proporcionan condicións favorables para o pregamento correcto doutras proteínas, impedindo así a súa agregación. Como impiden o pregamento incorrecto das proteínas, preveñen doenzas como a enfermidade das vacas tolas. As proteínas que se acaban de sintetizar xeralmente teñen que pregar a súa cadea linear de aminoácidos orixinal a unha forma en tres dimensións. As chaperoninas pertencen a unha gran clase de moléculas que axudan ao pregamento das proteínas, chamadas chaperonas moleculares ou, simplemente, chaperonas.[1] A enerxía para o pregamento de proteínas fornécea o adenosín trifosfato (ATP). As proteínas chaperoninas poden tamén etiquetar proteínas mal pregadas para que sexan degradadas.

Estrutura[editar | editar a fonte]

A estrutura destas chaperoninas lembra dous donuts un sobre o outro que crean un barril.

Cada anel pode estar composto de 7, 8 ou 9 subunidades dependendo do organismo no cal se atopa a chaperonina.

Clases de chaperoninas[editar | editar a fonte]

Grupo I[editar | editar a fonte]

As chaperoninas do grupo I encóntranse en bacterias e en orgánulos de orixe emdosimbiótica: cloroplastos e mitocondrias.

O complexo GroEL/GroES en E. coli é unha chaperonina do grupo I, que é o complexo de chaperonina grande (~ 1 MDa) mellor caracterizado.

  • GroEL é un dobre anel de 14mer (tetradecámero) cunha mancha hidrófoba na súa abertura e pode acomodar o pregamento nativo de substratos de 15 a 60 kDa.
  • GroES é un heptámero de anel simple que se une a GroEL en presenza de ATP ou análogos do estado de transición da hidrólise do ATP, como o ADP-AlF3. É como unha tapa que cobre GroEL (caixa/botella).

GroEL/GroES é posible que non poida desfacer agregados de proteínas, pero cineticamente compite na vía do pregamento incorrecto e a agregación, polo que impide a formación de agregados.[2]

Grupo II[editar | editar a fonte]

Chaperonina II termosoma, hetero16mer, Sulfolobus solfataricus.

As chaperoninas do grupo II, que se encontran no citosol eucariota e en arqueas, están peor caracterizadas.

O TRiC (complexo do Anel TCP-1, tamén chamado CCT para chaperonina que contén TCP-1), a chaperonina eucariota, está composta de dous aneis de oito subunidades diferentes aínda que relacionadas, cada unha das cales se cre que está representada unha vez por cada anel de oito membros. O TRiC pensábase orixinalmente que pregaba só as proteínas citoesqueléticas actina e tubulina, mais agora sábese que prega ducias de substratos.

A Mm cpn (chaperonina de Methanococcus maripaludis), que se encontra na arquea Methanococcus maripaludis, está composta de 16 subunidades idénticas (oito por anel). Prega a proteína mitocondrial rodanase; porén, aínda non se identificou ningún substrato natural seu.[3]

As chaperoninas do grupo II non se cre que utilicen un cofactor de tipo GroES para pregar os seus substratos, senón que conteñen unha tapa "integrada" que se pecha de maneira dependente do ATP para encapsular os seus substratos, un proceso que é necesario para a actividade óptima de pregamento de proteínas.

Mecanismo de acción[editar | editar a fonte]

As chaperoninas sofren grandes cambios conformacionais durante unha reacción de pregamento como función da hidrólise encimática de ATP e a unión a proteínas substrato e cochaperoninas, como GroES. Estes cambios conformacionais permiten que a chaperonina se una a unha proteína non pregada ou mal pregadan, encapsule dita proteína dentro dunha das cavidades formadas por dous aneis, e libere a proteína de novo na disolución. Despois da liberación, a proteína substrato vaise pregar ou precisará máis roldas de pregamento, para o cal pode unirse outra vez a unha chaperonina.

O mecanismo exacto polo cal as chaperoninas facilitan o pregamento de proteínas substrato descoñécese. De acordo con recentes análises por diferfentes técnicas experimentais, as proteínas substrato unidas a GroEL poboan un conxunto de estados compactos e expandidos localmente que carecen de interaccións terciarias estables.[4] Propuxéronse varios modelos da acción das chaperoninas, que xeralmente se centran en dous papeis (non mutuamente exclusivos) do interior da chaperonina: pasivo e activo. Os modelos pasivos tratan a gaiola que forman as chaperoninas como unha forma inerte, que exerce a súa influencia ao reducir o espazo conformacional accesible para a proteína substrato ou impedindo as interaccións intermoleculares, por exemplo a prevención da agregación.[5] O papel das chaperoninas activas é intervir en interaccións específicas chaperonina–substrato que poden ser acopladas a rearranxos conformacionais da chaperonina.[6][7][8]

Probablemente o modelo máis popular do papel das chaperoninas activas é o mecanismo de annealing iterativo (IAM), que se centra no efecto da unión repetitiva de natureza hidrofóbica do substrato proteína coa chaperonina. De acordo con estudos de simulacións computacionais, o IAM orixina un pregamento máis produtivo ao causar o despregamento das conformacións mal pregadas do substrato[8] ou ao impedir o pregamento incorrecto de proteínas cambiando a vía de pregamento.[6]

Conservación da homoloxía funcional e estrutural[editar | editar a fonte]

Todas as células conteñen chaperoninas.

Estes complexos de proteínas parecen ser esenciais para a vida de E. coli, Saccharomyces cerevisiae e os eucariotas superiores. Aínda que hai diferenzas entre as chaperoninas eucariotas, bacterianas e arqueanas, a estrutura xeral e o mecanismo están conservados.

Notas[editar | editar a fonte]

  1. Howard Hughes Investigators: Arthur L. Horwich, M.D.
  2. Fenton WA, Horwich AL (May 2003). "Chaperonin-mediated protein folding: fate of substrate polypeptide". Q. Rev. Biophys. 36 (2): 229–56. PMID 14686103. doi:10.1017/S0033583503003883. 
  3. Kusmierczyk AR, Martin J (May 2003). "Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis.". Biochem. J. 371 (3): 669–673. PMC 1223359. PMID 12628000. doi:10.1042/BJ20030230. 
  4. Hartl, FU; Hayer-Hartl, M (2009). "Converging concepts of protein folding in vitro and in vivo". Nature Structural & Molecular Biology 16 (6): 574–581. PMID 19491934. doi:10.1038/nsmb.1591. 
  5. Apetri, AC; Horwich, AL (2008). "Chaperonin chamber accelerates protein folding through passive action of preventing aggregation". Proceedings of the National Academy of Sciences 105 (45): 17351–17355. PMC 2579888. PMID 18987317. doi:10.1073/pnas.0809794105. 
  6. 6,0 6,1 Kmiecik, S; Kolinski, A (2011). "Simulation of Chaperonin Effect on Protein Folding: A Shift from Nucleation–Condensation to Framework Mechanism". Journal of the American Chemical Society 133 (26): 10283–10289. PMC 3132998. PMID 21618995. doi:10.1021/ja203275f. 
  7. Chakraborty, K; Chatila, M; Sinha, J; Shi, Q; Poschner, BC; Sikor, M; Jiang, G; Lamb, DC; Hartl, FU; Hayer-Hartl, M (2010). "Chaperonin-Catalyzed Rescue of Kinetically Trapped States in Protein Folding". Cell 142 (1): 112–122. PMID 20603018. doi:10.1016/j.cell.2010.05.027. 
  8. 8,0 8,1 Todd, MJ; Lorimer, GH; Thirumalai, D. (1996). "Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism.". Proceedings of the National Academy of Sciences 93 (9): 4030–4035. ISSN 0027-8424. PMC 39481. doi:10.1073/pnas.93.9.4030. 

Véxase tamén[editar | editar a fonte]

Outros artigos[editar | editar a fonte]

Véxase tamén[editar | editar a fonte]

Ligazóns externas[editar | editar a fonte]