Saltar ao contido

Función masa de probabilidade

Na Galipedia, a Wikipedia en galego.
A gráfica dunha función de masa de probabilidade. Todos os valores desta función deben ser non negativos e sumar 1.

En probabilidade e estatística, unha función de masa de probabilidade (ás veces chamada función de probabilidade ou función de frecuencia[1] ) é unha función que dá a probabilidade de que unha variable aleatoria discreta sexa exactamente igual a algún valor.[2] Ás veces tamén se coñece como función de densidade de probabilidade discreta. A función de masa de probabilidade adoita ser o medio principal para definir unha distribución de probabilidade discreta, e estas funcións existen para variables aleatorias escalares ou multivariabeis cuxo dominio é discreto.

Unha función de masa de probabilidade difire dunha función de densidade de probabilidade (PDF) en que esta última está asociada a variables aleatorias continuas e non discretas.

O valor da variable aleatoria que ten a maior masa de probabilidade chámase moda.

Definición formal

[editar | editar a fonte]

A función de masa de probabilidade é a distribución de probabilidade dunha variable aleatoria discreta e proporciona os valores posibeis e as súas probabilidades asociadas. É a función definida por

[3]

Cumpre que e

Hai tres distribucións principais como exemplo, a distribución de Bernoulli, a distribución binomial e a distribución xeométrica.

  • Distribución de Bernoulli: ber(p) , úsase para modelar un experimento con só dous resultados posibles. Os dous resultados adoitan codificarse como 1 e 0. Un exemplo sería lanzar unha moeda. Se é o espazo mostral do lanzamento dunha moeda non trucada, e é unha variable aleatoria definida en asignamos 0 a "cruz" e 1 a "cara". Dado que a moeda non está trucada, a función masa de probabilidade é
  • Distribución binomial, modela o número de éxitos cando alguén fai n experimentos con substitución. Cada experimento é independente, con dous resultados posibeis. A súa función masa de probabilidade é .
    Función masa de probabilidade de tirar un dado. Todos os números do dado teñen a mesma probabilidade de aparecer.
    Un exemplo da distribución binomial é a probabilidade de obter exactamente un 6 cando alguén lanza un dado 3 veces: .
  • A distribución xeométrica describe o número de probas necesarias para obter un éxito. A súa función de masa de probabilidade é . Un exemplo é lanzar unha moeda ata que aparece a primeira "cara". denota a probabilidade do resultado "cara", e denota o número de lanzamentos de moedas necesarios.
  • Un exemplo dunha distribución discreta multivariábel, e da súa función de masa de probabilidade, é o da distribución multinomial. Aquí as variabeis aleatorias múltiples son o número de éxitos en cada unha das categorías despois dun determinado número de probas, e cada masa de probabilidade distinta de cero dá a probabilidade dunha determinada combinación de números de éxitos nas distintas categorías.

Sería un caso nada frecuente.

A seguinte distribución exponencialmente decrecente é un exemplo dunha distribución cun número infinito de resultados posibles, todos os enteiros positivos: A pesar do número infinito de resultados posibeis, a masa de probabilidade total é 1/2 + 1/4 + 1/8 + ⋯ = 1, satisfacendo o requisito de probabilidade total unitaria para unha distribución de probabilidade.

Caso multivariábel

[editar | editar a fonte]

Dúas ou máis variables aleatorias discretas teñen unha función de masa de probabilidade conxunta, que dá a probabilidade de cada combinación posible de realizacións para as variabeis aleatorias.

Véxase tamén

[editar | editar a fonte]

Bibliografía

[editar | editar a fonte]

Outros artigos

[editar | editar a fonte]