Distribución xeométrica

Na Galipedia, a Wikipedia en galego.
Saltar ata a navegación Saltar á procura

A distribución xeométrica é calquera das dúas distribucións de probabilidade discretas seguintes:

  • a distribución de probabilidade do número X do ensaio de Bernoulli necesaria para obter un éxito, contido no conxunto { 1, 2, 3,...} ou
  • a distribución de probabilidade do número Y = X − 1 de fallos antes do primeiro éxito, contido no conxunto { 0, 1, 2, 3,... }.

Propiedades[editar | editar a fonte]

  1. A distribución xeométrica non ten memoria, é dicir, . Isto significa que se intentamos repetir o experimento ata o primeiro éxito, entón, dado que o primeiro éxito aínda non ocorreu, a distribución da variable condicionada do número de ensaios adicionais non depende de cantos fallos se observaron. De feito, a distribución xeométrica é a única distribución discreta sen memoria.
  2. Se a probabilidade de éxito en cada ensaio é p, entón a de que sexan necesarios x para obter un éxito é para x = 1, 2, 3,.... Equivalentemente, a probabilidade de que haxa x fallos antes do primeiro éxito é para y = 0, 1, 2,... En ambos os casos, a secuencia é unha progresión xeométrica.
  3. O valor esperado dunha variable aleatoria X distribuída xeometricamente é e dado que Y = X-1, .
  4. En ambos os casos, a varianza é .
  5. As funcións xeratrices de X e a de Y son, respectivamente, .
  6. De todas estas distribucións contidas en {1, 2, 3,... } cun valor esperado dado μ, a distribución xeométrica X con parámetro p = 1/μ é a de maior entropía.
  7. A distribución xeométrica do número y de fallos antes do primeiro éxito é infinitamente divisible, é dicir, para calquera enteiro positivo n, existen variables aleatorias independentes Y 1,..., Yn distribuídas identicamente a suma das que teñen a mesma distribución que ten Y. Estas non serán xeométricamente distribuídas agás se n = 1.

Distribucións relacionadas[editar | editar a fonte]

A distribución xeométrica é un caso especial da distribución binomial negativa con parámetro k = 1. Máis generalmente, se Y 1,...,Yk son variables independentes distribuídas xeometricamente con parámetro p, entón segue unha distribución binomial negativa con parámetros k e p.

Se Y1,...,Yr son variables independentes distribuídas xeometricamente (con diferentes parámetros de éxito pm posibles ), entón o seu mínimo segue tamén unha distribución xeométrica, con parámetro

.

Véxase tamén[editar | editar a fonte]

Ligazóns externas[editar | editar a fonte]