Saltar ao contido
Menú principal
Menú principal
mover á barra lateral
agochar
Navegación
Portada
Portal da comunidade
A Taberna
Actualidade
Cambios recentes
Artigos de calidade
Páxina ao chou
Axuda
Procura
Procurar
Aparencia
Doazóns
Crear unha conta
Acceder ao sistema
Ferramentas persoais
Doazóns
Crear unha conta
Acceder ao sistema
Páxinas para os editores sen a sesión iniciada
máis información
Contribucións
Conversa
Contidos
mover á barra lateral
agochar
Inicio
1
Integrais con r=√x
2
+a
2
2
Integrais con s=√x
2
-a
2
3
Integrais con t=√a
2
-x
2
4
Integrais con R=√ax
2
+bx+c
5
Integrais con √ax+b
Mostrar ou agochar a táboa de contidos
Lista de integrais de funcións irracionais
33 linguas
Afrikaans
العربية
Български
Bosanski
Català
Čeština
Чӑвашла
English
Esperanto
Español
Euskara
فارسی
Français
Hrvatski
Bahasa Indonesia
Italiano
日本語
ភាសាខ្មែរ
한국어
Македонски
Nederlands
Português
Română
Русский
Srpskohrvatski / српскохрватски
Slovenčina
Slovenščina
Српски / srpski
தமிழ்
Türkçe
Українська
Tiếng Việt
中文
Editar as ligazóns
Artigo
Conversa
galego
Ler
Editar
Editar a fonte
Ver o historial
Ferramentas
Ferramentas
mover á barra lateral
agochar
Accións
Ler
Editar
Editar a fonte
Ver o historial
Xeral
Páxinas que ligan con esta
Cambios relacionados
Páxinas especiais
Ligazón permanente
Información da páxina
Citar esta páxina
Xerar URL acurtado
Descargar o código QR
Imprimir/exportar
Crear un libro
Descargar como PDF
Versión para imprimir
Noutros proxectos
Elemento de Wikidata
Aparencia
mover á barra lateral
agochar
Na Galipedia, a Wikipedia en galego.
A seguinte é unha lista de
integrais
de
funcións irracionais
.
Integrais con r=√x
2
+a
2
[
editar
|
editar a fonte
]
∫
r
d
x
=
1
2
(
x
r
+
a
2
ln
(
x
+
r
)
)
{\displaystyle \int r\;dx={\frac {1}{2}}\left(xr+a^{2}\,\ln \left(x+r\right)\right)}
∫
r
3
d
x
=
1
4
x
r
3
+
1
8
3
a
2
x
r
+
3
8
a
4
ln
(
x
+
r
)
{\displaystyle \int r^{3}\;dx={\frac {1}{4}}xr^{3}+{\frac {1}{8}}3a^{2}xr+{\frac {3}{8}}a^{4}\ln \left(x+r\right)}
∫
r
5
d
x
=
1
6
x
r
5
+
5
24
a
2
x
r
3
+
5
16
a
4
x
r
+
5
16
a
6
ln
(
x
+
r
)
{\displaystyle \int r^{5}\;dx={\frac {1}{6}}xr^{5}+{\frac {5}{24}}a^{2}xr^{3}+{\frac {5}{16}}a^{4}xr+{\frac {5}{16}}a^{6}\ln \left(x+r\right)}
∫
x
r
d
x
=
r
3
3
{\displaystyle \int xr\;dx={\frac {r^{3}}{3}}}
∫
x
r
3
d
x
=
r
5
5
{\displaystyle \int xr^{3}\;dx={\frac {r^{5}}{5}}}
∫
x
r
2
n
+
1
d
x
=
r
2
n
+
3
2
n
+
3
{\displaystyle \int xr^{2n+1}\;dx={\frac {r^{2n+3}}{2n+3}}}
∫
x
2
r
d
x
=
x
r
3
4
−
a
2
x
r
8
−
a
4
8
ln
(
x
+
r
)
{\displaystyle \int x^{2}r\;dx={\frac {xr^{3}}{4}}-{\frac {a^{2}xr}{8}}-{\frac {a^{4}}{8}}\ln \left(x+r\right)}
∫
x
2
r
3
d
x
=
x
r
5
6
−
a
2
x
r
3
24
−
a
4
x
r
16
−
a
6
16
ln
(
x
+
r
)
{\displaystyle \int x^{2}r^{3}\;dx={\frac {xr^{5}}{6}}-{\frac {a^{2}xr^{3}}{24}}-{\frac {a^{4}xr}{16}}-{\frac {a^{6}}{16}}\ln \left(x+r\right)}
∫
x
3
r
d
x
=
r
5
5
−
a
2
r
3
3
{\displaystyle \int x^{3}r\;dx={\frac {r^{5}}{5}}-{\frac {a^{2}r^{3}}{3}}}
∫
x
3
r
3
d
x
=
r
7
7
−
a
2
r
5
5
{\displaystyle \int x^{3}r^{3}\;dx={\frac {r^{7}}{7}}-{\frac {a^{2}r^{5}}{5}}}
∫
x
3
r
2
n
+
1
d
x
=
r
2
n
+
5
2
n
+
5
−
a
3
r
2
n
+
3
2
n
+
3
{\displaystyle \int x^{3}r^{2n+1}\;dx={\frac {r^{2n+5}}{2n+5}}-{\frac {a^{3}r^{2n+3}}{2n+3}}}
∫
x
4
r
d
x
=
x
3
r
3
6
−
a
2
x
r
3
8
+
a
4
x
r
16
+
a
6
16
ln
(
x
+
r
)
{\displaystyle \int x^{4}r\;dx={\frac {x^{3}r^{3}}{6}}-{\frac {a^{2}xr^{3}}{8}}+{\frac {a^{4}xr}{16}}+{\frac {a^{6}}{16}}\ln \left(x+r\right)}
∫
x
4
r
3
d
x
=
x
3
r
5
8
−
a
2
x
r
5
16
+
a
4
x
r
3
64
+
3
a
6
x
r
128
+
3
a
8
128
ln
(
x
+
r
)
{\displaystyle \int x^{4}r^{3}\;dx={\frac {x^{3}r^{5}}{8}}-{\frac {a^{2}xr^{5}}{16}}+{\frac {a^{4}xr^{3}}{64}}+{\frac {3a^{6}xr}{128}}+{\frac {3a^{8}}{128}}\ln \left(x+r\right)}
∫
x
5
r
d
x
=
r
7
7
−
2
a
2
r
5
5
+
a
4
r
3
3
{\displaystyle \int x^{5}r\;dx={\frac {r^{7}}{7}}-{\frac {2a^{2}r^{5}}{5}}+{\frac {a^{4}r^{3}}{3}}}
∫
x
5
r
3
d
x
=
r
9
9
−
2
a
2
r
7
7
+
a
4
r
5
5
{\displaystyle \int x^{5}r^{3}\;dx={\frac {r^{9}}{9}}-{\frac {2a^{2}r^{7}}{7}}+{\frac {a^{4}r^{5}}{5}}}
∫
x
5
r
2
n
+
1
d
x
=
r
2
n
+
7
2
n
+
7
−
2
a
2
r
2
n
+
5
2
n
+
5
+
a
4
r
2
n
+
3
2
n
+
3
{\displaystyle \int x^{5}r^{2n+1}\;dx={\frac {r^{2n+7}}{2n+7}}-{\frac {2a^{2}r^{2n+5}}{2n+5}}+{\frac {a^{4}r^{2n+3}}{2n+3}}}
∫
r
d
x
x
=
r
−
a
ln
|
a
+
r
x
|
=
r
−
a
sinh
−
1
a
x
{\displaystyle \int {\frac {r\;dx}{x}}=r-a\ln \left|{\frac {a+r}{x}}\right|=r-a\sinh ^{-1}{\frac {a}{x}}}
∫
r
3
d
x
x
=
r
3
3
+
a
2
r
−
a
3
ln
|
a
+
r
x
|
{\displaystyle \int {\frac {r^{3}\;dx}{x}}={\frac {r^{3}}{3}}+a^{2}r-a^{3}\ln \left|{\frac {a+r}{x}}\right|}
∫
r
5
d
x
x
=
r
5
5
+
a
2
r
3
3
+
a
4
r
−
a
5
ln
|
a
+
r
x
|
{\displaystyle \int {\frac {r^{5}\;dx}{x}}={\frac {r^{5}}{5}}+{\frac {a^{2}r^{3}}{3}}+a^{4}r-a^{5}\ln \left|{\frac {a+r}{x}}\right|}
∫
r
7
d
x
x
=
r
7
7
+
a
2
r
5
5
+
a
4
r
3
3
+
a
6
r
−
a
7
ln
|
a
+
r
x
|
{\displaystyle \int {\frac {r^{7}\;dx}{x}}={\frac {r^{7}}{7}}+{\frac {a^{2}r^{5}}{5}}+{\frac {a^{4}r^{3}}{3}}+a^{6}r-a^{7}\ln \left|{\frac {a+r}{x}}\right|}
∫
d
x
r
=
sinh
−
1
x
a
=
ln
|
x
+
r
|
{\displaystyle \int {\frac {dx}{r}}=\sinh ^{-1}{\frac {x}{a}}=\ln \left|x+r\right|}
∫
d
x
r
3
=
x
a
2
r
{\displaystyle \int {\frac {dx}{r^{3}}}={\frac {x}{a^{2}r}}}
∫
x
d
x
r
=
r
{\displaystyle \int {\frac {x\,dx}{r}}=r}
∫
x
d
x
r
3
=
−
1
r
{\displaystyle \int {\frac {x\,dx}{r^{3}}}=-{\frac {1}{r}}}
∫
x
2
d
x
r
=
x
2
r
−
a
2
2
sinh
−
1
x
a
=
x
2
r
−
a
2
2
ln
|
x
+
r
|
{\displaystyle \int {\frac {x^{2}\;dx}{r}}={\frac {x}{2}}r-{\frac {a^{2}}{2}}\,\sinh ^{-1}{\frac {x}{a}}={\frac {x}{2}}r-{\frac {a^{2}}{2}}\ln \left|x+r\right|}
∫
d
x
x
r
=
−
1
a
sinh
−
1
a
x
=
−
1
a
ln
|
a
+
r
x
|
{\displaystyle \int {\frac {dx}{xr}}=-{\frac {1}{a}}\,\sinh ^{-1}{\frac {a}{x}}=-{\frac {1}{a}}\ln \left|{\frac {a+r}{x}}\right|}
Integrais con s=√x
2
-a
2
[
editar
|
editar a fonte
]
∫
x
s
d
x
=
1
3
s
3
{\displaystyle \int xs\;dx={\frac {1}{3}}s^{3}}
∫
s
d
x
x
=
s
−
a
cos
−
1
|
a
x
|
{\displaystyle \int {\frac {s\;dx}{x}}=s-a\cos ^{-1}\left|{\frac {a}{x}}\right|}
∫
d
x
s
=
∫
d
x
x
2
−
a
2
=
ln
|
x
+
s
a
|
{\displaystyle \int {\frac {dx}{s}}=\int {\frac {dx}{\sqrt {x^{2}-a^{2}}}}=\ln \left|{\frac {x+s}{a}}\right|}
∫
x
d
x
s
=
s
{\displaystyle \int {\frac {x\;dx}{s}}=s}
∫
x
d
x
s
3
=
−
1
s
{\displaystyle \int {\frac {x\;dx}{s^{3}}}=-{\frac {1}{s}}}
∫
x
d
x
s
5
=
−
1
3
s
3
{\displaystyle \int {\frac {x\;dx}{s^{5}}}=-{\frac {1}{3s^{3}}}}
∫
x
d
x
s
7
=
−
1
5
s
5
{\displaystyle \int {\frac {x\;dx}{s^{7}}}=-{\frac {1}{5s^{5}}}}
∫
x
d
x
s
2
n
+
1
=
−
1
(
2
n
−
1
)
s
2
n
−
1
{\displaystyle \int {\frac {x\;dx}{s^{2n+1}}}=-{\frac {1}{(2n-1)s^{2n-1}}}}
...
∫
x
2
m
d
x
s
2
n
+
1
=
−
1
2
n
−
1
x
2
m
−
1
s
2
n
−
1
+
2
m
−
1
2
n
−
1
∫
x
2
m
−
2
d
x
s
2
n
−
1
{\displaystyle \int {\frac {x^{2m}\;dx}{s^{2n+1}}}=-{\frac {1}{2n-1}}{\frac {x^{2m-1}}{s^{2n-1}}}+{\frac {2m-1}{2n-1}}\int {\frac {x^{2m-2}\;dx}{s^{2n-1}}}}
∫
x
2
d
x
s
=
x
s
2
+
a
2
2
ln
|
x
+
s
a
|
{\displaystyle \int {\frac {x^{2}\;dx}{s}}={\frac {xs}{2}}+{\frac {a^{2}}{2}}\ln \left|{\frac {x+s}{a}}\right|}
∫
x
2
d
x
s
3
=
−
x
s
+
ln
|
x
+
s
a
|
{\displaystyle \int {\frac {x^{2}\;dx}{s^{3}}}=-{\frac {x}{s}}+\ln \left|{\frac {x+s}{a}}\right|}
∫
x
4
d
x
s
=
x
3
s
4
+
3
8
a
2
x
s
+
3
8
a
4
ln
|
x
+
s
a
|
{\displaystyle \int {\frac {x^{4}\;dx}{s}}={\frac {x^{3}s}{4}}+{\frac {3}{8}}a^{2}xs+{\frac {3}{8}}a^{4}\ln \left|{\frac {x+s}{a}}\right|}
∫
x
4
d
x
s
3
=
x
s
2
−
a
2
x
s
+
3
2
a
2
ln
|
x
+
s
a
|
{\displaystyle \int {\frac {x^{4}\;dx}{s^{3}}}={\frac {xs}{2}}-{\frac {a^{2}x}{s}}+{\frac {3}{2}}a^{2}\ln \left|{\frac {x+s}{a}}\right|}
∫
x
4
d
x
s
5
=
−
x
s
−
1
3
x
3
s
3
+
ln
|
x
+
s
a
|
{\displaystyle \int {\frac {x^{4}\;dx}{s^{5}}}=-{\frac {x}{s}}-{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}+\ln \left|{\frac {x+s}{a}}\right|}
∫
x
2
m
d
x
s
2
n
+
1
=
(
−
1
)
n
−
m
1
a
2
(
n
−
m
)
∑
i
=
0
n
−
m
−
1
1
2
(
m
+
i
)
+
1
(
n
−
m
−
1
i
)
x
2
(
m
+
i
)
+
1
s
2
(
m
+
i
)
+
1
(
n
>
m
≥
0
)
{\displaystyle \int {\frac {x^{2m}\;dx}{s^{2n+1}}}=(-1)^{n-m}{\frac {1}{a^{2(n-m)}}}\sum _{i=0}^{n-m-1}{\frac {1}{2(m+i)+1}}{n-m-1 \choose i}{\frac {x^{2(m+i)+1}}{s^{2(m+i)+1}}}\qquad {\mbox{(}}n>m\geq 0{\mbox{)}}}
∫
d
x
s
3
=
−
1
a
2
x
s
{\displaystyle \int {\frac {dx}{s^{3}}}=-{\frac {1}{a^{2}}}{\frac {x}{s}}}
∫
d
x
s
5
=
1
a
4
[
x
s
−
1
3
x
3
s
3
]
{\displaystyle \int {\frac {dx}{s^{5}}}={\frac {1}{a^{4}}}\left[{\frac {x}{s}}-{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}\right]}
∫
d
x
s
7
=
−
1
a
6
[
x
s
−
2
3
x
3
s
3
+
1
5
x
5
s
5
]
{\displaystyle \int {\frac {dx}{s^{7}}}=-{\frac {1}{a^{6}}}\left[{\frac {x}{s}}-{\frac {2}{3}}{\frac {x^{3}}{s^{3}}}+{\frac {1}{5}}{\frac {x^{5}}{s^{5}}}\right]}
∫
d
x
s
9
=
1
a
8
[
x
s
−
3
3
x
3
s
3
+
3
5
x
5
s
5
−
1
7
x
7
s
7
]
{\displaystyle \int {\frac {dx}{s^{9}}}={\frac {1}{a^{8}}}\left[{\frac {x}{s}}-{\frac {3}{3}}{\frac {x^{3}}{s^{3}}}+{\frac {3}{5}}{\frac {x^{5}}{s^{5}}}-{\frac {1}{7}}{\frac {x^{7}}{s^{7}}}\right]}
∫
x
2
d
x
s
5
=
−
1
a
2
x
3
3
s
3
{\displaystyle \int {\frac {x^{2}\;dx}{s^{5}}}=-{\frac {1}{a^{2}}}{\frac {x^{3}}{3s^{3}}}}
∫
x
2
d
x
s
7
=
1
a
4
[
1
3
x
3
s
3
−
1
5
x
5
s
5
]
{\displaystyle \int {\frac {x^{2}\;dx}{s^{7}}}={\frac {1}{a^{4}}}\left[{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}-{\frac {1}{5}}{\frac {x^{5}}{s^{5}}}\right]}
∫
x
2
d
x
s
9
=
−
1
a
6
[
1
3
x
3
s
3
−
2
5
x
5
s
5
+
1
7
x
7
s
7
]
{\displaystyle \int {\frac {x^{2}\;dx}{s^{9}}}=-{\frac {1}{a^{6}}}\left[{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}-{\frac {2}{5}}{\frac {x^{5}}{s^{5}}}+{\frac {1}{7}}{\frac {x^{7}}{s^{7}}}\right]}
Integrais con t=√a
2
-x
2
[
editar
|
editar a fonte
]
∫
t
d
x
=
1
2
(
x
t
+
a
2
sin
−
1
x
a
)
(
|
x
|
≤
|
a
|
)
{\displaystyle \int t\;dx={\frac {1}{2}}\left(xt+a^{2}\sin ^{-1}{\frac {x}{a}}\right)\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}
∫
x
t
d
x
=
−
1
3
t
3
(
|
x
|
≤
|
a
|
)
{\displaystyle \int xt\;dx=-{\frac {1}{3}}t^{3}\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}
∫
t
d
x
x
=
t
−
a
ln
|
a
+
t
x
|
(
|
x
|
≤
|
a
|
)
{\displaystyle \int {\frac {t\;dx}{x}}=t-a\ln \left|{\frac {a+t}{x}}\right|\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}
∫
d
x
t
=
sin
−
1
x
a
(
|
x
|
≤
|
a
|
)
{\displaystyle \int {\frac {dx}{t}}=\sin ^{-1}{\frac {x}{a}}\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}
∫
x
2
d
x
t
=
−
x
2
t
+
a
2
2
sin
−
1
x
a
(
|
x
|
≤
|
a
|
)
{\displaystyle \int {\frac {x^{2}\;dx}{t}}=-{\frac {x}{2}}t+{\frac {a^{2}}{2}}\sin ^{-1}{\frac {x}{a}}\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}
∫
t
d
x
=
1
2
(
x
t
−
sgn
x
cosh
−
1
|
x
a
|
)
(
|
x
|
≥
|
a
|
)
{\displaystyle \int t\;dx={\frac {1}{2}}\left(xt-\operatorname {sgn} x\,\cosh ^{-1}\left|{\frac {x}{a}}\right|\right)\qquad {\mbox{(}}|x|\geq |a|{\mbox{)}}}
Integrais con R=√ax
2
+bx+c
[
editar
|
editar a fonte
]
∫
d
x
a
x
2
+
b
x
+
c
=
1
a
ln
|
2
a
R
+
2
a
x
+
b
|
(para
a
>
0
)
{\displaystyle \int {\frac {dx}{\sqrt {ax^{2}+bx+c}}}={\frac {1}{\sqrt {a}}}\ln \left|2{\sqrt {a}}R+2ax+b\right|\qquad {\mbox{(para }}a>0{\mbox{)}}}
∫
d
x
a
x
2
+
b
x
+
c
=
1
a
sinh
−
1
2
a
x
+
b
4
a
c
−
b
2
(para
a
>
0
,
4
a
c
−
b
2
>
0
)
{\displaystyle \int {\frac {dx}{\sqrt {ax^{2}+bx+c}}}={\frac {1}{\sqrt {a}}}\,\sinh ^{-1}{\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(para }}a>0{\mbox{, }}4ac-b^{2}>0{\mbox{)}}}
∫
d
x
a
x
2
+
b
x
+
c
=
1
a
ln
|
2
a
x
+
b
|
(para
a
>
0
,
4
a
c
−
b
2
=
0
)
{\displaystyle \int {\frac {dx}{\sqrt {ax^{2}+bx+c}}}={\frac {1}{\sqrt {a}}}\ln |2ax+b|\quad {\mbox{(para }}a>0{\mbox{, }}4ac-b^{2}=0{\mbox{)}}}
∫
d
x
a
x
2
+
b
x
+
c
=
−
1
−
a
arcsin
2
a
x
+
b
b
2
−
4
a
c
(para
a
<
0
,
4
a
c
−
b
2
<
0
)
{\displaystyle \int {\frac {dx}{\sqrt {ax^{2}+bx+c}}}=-{\frac {1}{\sqrt {-a}}}\arcsin {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(para }}a<0{\mbox{, }}4ac-b^{2}<0{\mbox{)}}}
∫
d
x
(
a
x
2
+
b
x
+
c
)
3
=
4
a
x
+
2
b
(
4
a
c
−
b
2
)
R
{\displaystyle \int {\frac {dx}{\sqrt {(ax^{2}+bx+c)^{3}}}}={\frac {4ax+2b}{(4ac-b^{2}){\sqrt {R}}}}}
∫
d
x
(
a
x
2
+
b
x
+
c
)
5
=
4
a
x
+
2
b
3
(
4
a
c
−
b
2
)
R
(
1
R
+
8
a
4
a
c
−
b
2
)
{\displaystyle \int {\frac {dx}{\sqrt {(ax^{2}+bx+c)^{5}}}}={\frac {4ax+2b}{3(4ac-b^{2}){\sqrt {R}}}}\left({\frac {1}{R}}+{\frac {8a}{4ac-b^{2}}}\right)}
∫
d
x
(
a
x
2
+
b
x
+
c
)
2
n
+
1
=
4
a
x
+
2
b
(
2
n
−
1
)
(
4
a
c
−
b
2
)
R
(
2
n
−
1
)
/
2
+
8
a
(
n
−
1
)
(
2
n
−
1
)
(
4
a
c
−
b
2
)
∫
d
x
R
(
2
n
−
1
)
/
2
{\displaystyle \int {\frac {dx}{\sqrt {(ax^{2}+bx+c)^{2n+1}}}}={\frac {4ax+2b}{(2n-1)(4ac-b^{2})R^{(2n-1)/2}}}+{\frac {8a(n-1)}{(2n-1)(4ac-b^{2})}}\int {\frac {dx}{R^{(2n-1)/2}}}}
∫
x
d
x
a
x
2
+
b
x
+
c
=
R
a
−
b
2
a
∫
d
x
R
{\displaystyle \int {\frac {x\;dx}{\sqrt {ax^{2}+bx+c}}}={\frac {\sqrt {R}}{a}}-{\frac {b}{2a}}\int {\frac {dx}{\sqrt {R}}}}
∫
x
d
x
(
a
x
2
+
b
x
+
c
)
3
=
−
2
b
x
+
4
c
(
4
a
c
−
b
2
)
R
{\displaystyle \int {\frac {x\;dx}{\sqrt {(ax^{2}+bx+c)^{3}}}}=-{\frac {2bx+4c}{(4ac-b^{2}){\sqrt {R}}}}}
∫
x
d
x
(
a
x
2
+
b
x
+
c
)
2
n
+
1
=
−
1
(
2
n
−
1
)
a
R
(
2
n
−
1
)
/
2
−
b
2
a
∫
d
x
R
(
2
n
+
1
)
/
2
{\displaystyle \int {\frac {x\;dx}{\sqrt {(ax^{2}+bx+c)^{2n+1}}}}=-{\frac {1}{(2n-1)aR^{(2n-1)/2}}}-{\frac {b}{2a}}\int {\frac {dx}{R^{(2n+1)/2}}}}
∫
d
x
x
a
x
2
+
b
x
+
c
=
−
1
c
ln
(
2
c
R
+
b
x
+
2
c
x
)
(para
c
>
0
)
{\displaystyle \int {\frac {dx}{x{\sqrt {ax^{2}+bx+c}}}}=-{\frac {1}{\sqrt {c}}}\ln \left({\frac {2{\sqrt {cR}}+bx+2c}{x}}\right)\qquad {\mbox{(para }}c>0{\mbox{)}}}
∫
d
x
x
a
x
2
+
b
x
+
c
=
1
−
c
sin
−
1
(
b
x
+
2
c
|
x
|
b
2
−
4
a
c
)
(para
c
<
0
)
{\displaystyle \int {\frac {dx}{x{\sqrt {ax^{2}+bx+c}}}}={\frac {1}{\sqrt {-c}}}\sin ^{-1}\left({\frac {bx+2c}{|x|{\sqrt {b^{2}-4ac}}}}\right)\qquad {\mbox{(para }}c<0{\mbox{)}}}
∫
d
x
x
a
x
2
+
b
x
+
c
=
−
1
c
sinh
−
1
(
b
x
+
2
c
|
x
|
4
a
c
−
b
2
)
{\displaystyle \int {\frac {dx}{x{\sqrt {ax^{2}+bx+c}}}}=-{\frac {1}{\sqrt {c}}}\sinh ^{-1}\left({\frac {bx+2c}{|x|{\sqrt {4ac-b^{2}}}}}\right)}
Integrais con √ax+b
[
editar
|
editar a fonte
]
∫
d
x
x
a
x
+
b
=
−
2
b
tanh
−
1
a
x
+
b
b
{\displaystyle \int {\frac {dx}{x{\sqrt {ax+b}}}}\,=\,{\frac {-2}{\sqrt {b}}}\tanh ^{-1}{\sqrt {\frac {ax+b}{b}}}}
∫
a
x
+
b
x
d
x
=
2
(
a
x
+
b
−
b
tanh
−
1
a
x
+
b
b
)
{\displaystyle \int {\frac {\sqrt {ax+b}}{x}}\,dx\;=\;2\left({\sqrt {ax+b}}-{\sqrt {b}}\tanh ^{-1}{\sqrt {\frac {ax+b}{b}}}\right)}
∫
x
n
a
x
+
b
d
x
=
2
a
(
2
n
+
1
)
(
x
n
a
x
+
b
−
b
n
∫
x
n
−
1
a
x
+
b
d
x
)
{\displaystyle \int {\frac {x^{n}}{\sqrt {ax+b}}}\,dx\;=\;{\frac {2}{a(2n+1)}}\left(x^{n}{\sqrt {ax+b}}-bn\int {\frac {x^{n-1}}{\sqrt {ax+b}}}\,dx\right)}
∫
x
n
a
x
+
b
d
x
=
2
2
n
+
1
(
x
n
+
1
a
x
+
b
+
b
x
n
a
x
+
b
−
n
b
∫
x
n
−
1
a
x
+
b
d
x
)
{\displaystyle \int x^{n}{\sqrt {ax+b}}\,dx\;=\;{\frac {2}{2n+1}}\left(x^{n+1}{\sqrt {ax+b}}+bx^{n}{\sqrt {ax+b}}-nb\int x^{n-1}{\sqrt {ax+b}}\,dx\right)}
Categoría
:
Listas de matemáticas