Sistema dinámico

Na Galipedia, a Wikipedia en galego.
O atractor de Lorenz xorde no estudo do oscilador de Lorenz, un sistame dinámico.

Un sistema dinámico é un sistema cun estado que evoluciona co tempo. Os sistemas físicos en situación non estacionaria son exemplos de sistemas dinámicos, pero tamén existen modelos económicos, matemáticos e doutros tipos que son sistemas abstractos que son, ademais, sistemas dinámicos. O comportamento en devandito estado pódese caracterizar determinando os límites do sistema, os elementos e as súas relacións; desta forma pódense elaborar modelos que buscan representar a estrutura do mesmo sistema.

Ao definir os límites do sistema faise, en primeiro lugar, unha selección daqueles compoñentes que contribúan a xerar os modos de comportamento, e logo determínase o espazo onde levará a cabo o estudo, omitindo toda clase de aspectos irrelevantes.

Historia[editar | editar a fonte]

Adoita considerarse a Henri Poincaré como o fundador dos sistemas dinámicos.[1] Poincaré publicou dous monografías clásicas, "New Methods of Celestial Mechanics" (1892–1899) e "Lectures on Celestial Mechanics" (1905–1910). Nelas, aplicou con éxito os resultados das súas investigacións ao problema do movemento de tres corpos e estudou detalladamente o comportamento das solucións (frecuencia, estabilidade, asíntotas etc). Estes artigos incluían o teorema da recurrencia de Poincaré, que afirma que certos sistemas, despois dun tempo suficientemente longo mais finito, volverá a un estado moi próximo ao inicial.

Aleksandr Lyapunov desenvolveu moitos métodos importantes de aproximacións. Os seus métodos, que desenvolveu en 1899, fixeron posible definir a estabilidade de conxuntos de ecuacións diferenciais ordinarias. Creou a teoría moderna da estabilidade dun sistema dinámico.

En 1913, George David Birkhoff probou o último teorema xeométrico de Poincaré, caso especial do problema dos tres corpos, resultado que o fixo célebre. En 1927 publicou Dynamical Systems[2] e en 1931 descubriu o que se coñece como teorema ergódico, que resolveu, polo menos en principio, un problema fundamental de mecánica estatística. O teorema ergódico tamén ten repercusións na dinámica.

Stephen Smale tamén fixo avances significativos. A súa primeira contribución foi a ferradura de Smale que deu pulo a investigación dos sistemas dinámicos. Oleksandr Mykolaiovych Sharkovsky desenvolveu o teorema de Sharkovsky sobre os períodos dos sistemas dinámicos discretos en 1964. Unha das implicacións do teorema é que se un sistema dinámico discreto na recta real ten un punto periódico de período 3, entón debe ter puntos periódicos de calquera outro período.

Elementos para ter en conta[editar | editar a fonte]

En canto á elaboración dos modelos, os elementos e as súas relacións, débese ter en conta:

  1. Un sistema está formado por un conxunto de elementos en interacción.
  2. O comportamento do sistema pódese mostrar a través de diagramas causais.
  3. Hai varios tipos de variables: variables exóxenas (son aquelas que afectan o sistema sen que este as provoque) e as variables endóxenas (afectan o sistema pero este si as provoca).

Exemplo de sistema dinámico[editar | editar a fonte]

Un exemplo dun sistema dinámico pódese ver nunha especie de peces que se reproduce de tal forma que este ano a cantidade de peixes é , o ano próximo será . Desta maneira pódese pór nomes ás cantidades de peixes que haberá cada ano, así: ano inicial , ano primeiro ,........... ......, ano k .

Como se pode observar: , cúmprese para calquera ano k; o cal significa que a cantidade de peixes pode determinarse se se coñece a cantidade do ano anterior. Por conseguinte esta ecuación representa un sistema dinámico.

Tipos de sistemas dinámicos[editar | editar a fonte]

Os sistemas dinámicos divídense en sistemas discretos no tempo e continuos no tempo. Un sistema dinámico chámase discreto se o tempo se mide en pequenos intres; estes son modelados como relacións recursivas, tal como a ecuación loxística:


onde t denota os pasos discretos do tempo e x é a variable que cambia con este. Un sistema dinámico discreto determinista xeral pode modelarse mediante unha ecuación abstracta do tipo:

Se o tempo se mide en forma continua, o sistema dinámico continuo resultante exprésase como unha ecuación diferencial ordinaria; por exemplo:

onde x é a variable que cambia co tempo t. A variable x é normalmente un número real, aínda que tamén pode ser un vector en Rk.

Sistemas lineares e non lineares[editar | editar a fonte]

Distínguese entre sistemas dinámicos lineares e sistemas dinámicos non lineares. Nos sistemas lineares, o segundo membro da ecuación é unha expresión que depende en forma linear de x, tal como:

Se se coñecen dúas solucións para un sistema linear, a suma delas é tamén unha solución; isto coñécese como principio de superposición. En xeral, as solucións provenientes dun espazo vectorial permiten o uso da álxebra linear e simplifican significativamente a análise. Para sistemas lineares continuos, o método da transformada de Laplace tamén pode empregarse para transformar a ecuación diferencial nunha ecuación alxébrica; así mesmo que para os sistemas lineares discretos, o método da transformada Z tamén pode empregarse para transformar a ecuación diferencial nunha ecuación alxébrica.

Os sistemas non lineares son moito máis difíciles de analizar e a miúdo exhiben un fenómeno coñecido como caos, con comportamentos totalmente impredicibles.

Notas[editar | editar a fonte]

  1. Holmes, Philip. "Poincaré, celestial mechanics, dynamical-systems theory and "chaos"." Physics Reports 193.3 (1990): 137-163.
  2. Dynamical Systems

Véxase tamén[editar | editar a fonte]

Bibliografía[editar | editar a fonte]

Outros artigos[editar | editar a fonte]

Ligazóns externas[editar | editar a fonte]