Lista de integrais de funcións racionais
Na Galipedia, a Wikipedia en galego.
Saltar ata a navegación
Saltar á procura
A seguinte é unha lista de
integrais
de
funcións racionais
.
∫
(
a
x
+
b
)
n
d
x
=
(
a
x
+
b
)
n
+
1
a
(
n
+
1
)
(para
n
≠
−
1
)
{\displaystyle \int (ax+b)^{n}dx={\frac {(ax+b)^{n+1}}{a(n+1)}}\qquad {\mbox{(para }}n\neq -1{\mbox{)}}}
∫
d
x
a
x
+
b
=
1
a
ln
|
a
x
+
b
|
{\displaystyle \int {\frac {dx}{ax+b}}={\frac {1}{a}}\ln \left|ax+b\right|}
∫
x
(
a
x
+
b
)
n
d
x
=
a
(
n
+
1
)
x
−
b
a
2
(
n
+
1
)
(
n
+
2
)
(
a
x
+
b
)
n
+
1
(para
n
∉
{
−
1
,
−
2
}
)
{\displaystyle \int x(ax+b)^{n}dx={\frac {a(n+1)x-b}{a^{2}(n+1)(n+2)}}(ax+b)^{n+1}\qquad {\mbox{(para }}n\not \in \{-1,-2\}{\mbox{)}}}
∫
x
d
x
a
x
+
b
=
x
a
−
b
a
2
ln
|
a
x
+
b
|
{\displaystyle \int {\frac {x\;dx}{ax+b}}={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|}
∫
x
d
x
(
a
x
+
b
)
2
=
b
a
2
(
a
x
+
b
)
+
1
a
2
ln
|
a
x
+
b
|
{\displaystyle \int {\frac {x\;dx}{(ax+b)^{2}}}={\frac {b}{a^{2}(ax+b)}}+{\frac {1}{a^{2}}}\ln \left|ax+b\right|}
∫
x
d
x
(
a
x
+
b
)
n
=
a
(
1
−
n
)
x
−
b
a
2
(
n
−
1
)
(
n
−
2
)
(
a
x
+
b
)
n
−
1
(para
n
∉
{
−
1
,
−
2
}
)
{\displaystyle \int {\frac {x\;dx}{(ax+b)^{n}}}={\frac {a(1-n)x-b}{a^{2}(n-1)(n-2)(ax+b)^{n-1}}}\qquad {\mbox{(para }}n\not \in \{-1,-2\}{\mbox{)}}}
∫
x
2
d
x
a
x
+
b
=
1
a
3
(
(
a
x
+
b
)
2
2
−
2
b
(
a
x
+
b
)
+
b
2
ln
|
a
x
+
b
|
)
{\displaystyle \int {\frac {x^{2}\;dx}{ax+b}}={\frac {1}{a^{3}}}\left({\frac {(ax+b)^{2}}{2}}-2b(ax+b)+b^{2}\ln \left|ax+b\right|\right)}
∫
x
2
d
x
(
a
x
+
b
)
2
=
1
a
3
(
a
x
+
b
−
2
b
ln
|
a
x
+
b
|
−
b
2
a
x
+
b
)
{\displaystyle \int {\frac {x^{2}\;dx}{(ax+b)^{2}}}={\frac {1}{a^{3}}}\left(ax+b-2b\ln \left|ax+b\right|-{\frac {b^{2}}{ax+b}}\right)}
∫
x
2
d
x
(
a
x
+
b
)
3
=
1
a
3
(
ln
|
a
x
+
b
|
+
2
b
a
x
+
b
−
b
2
2
(
a
x
+
b
)
2
)
{\displaystyle \int {\frac {x^{2}\;dx}{(ax+b)^{3}}}={\frac {1}{a^{3}}}\left(\ln \left|ax+b\right|+{\frac {2b}{ax+b}}-{\frac {b^{2}}{2(ax+b)^{2}}}\right)}
∫
x
2
d
x
(
a
x
+
b
)
n
=
1
a
3
(
−
1
(
n
−
3
)
(
a
x
+
b
)
n
−
3
+
2
b
(
n
−
2
)
(
a
+
b
)
n
−
2
−
b
2
(
n
−
1
)
(
a
x
+
b
)
n
−
1
)
(para
n
∉
{
1
,
2
,
3
}
)
{\displaystyle \int {\frac {x^{2}\;dx}{(ax+b)^{n}}}={\frac {1}{a^{3}}}\left(-{\frac {1}{(n-3)(ax+b)^{n-3}}}+{\frac {2b}{(n-2)(a+b)^{n-2}}}-{\frac {b^{2}}{(n-1)(ax+b)^{n-1}}}\right)\qquad {\mbox{(para }}n\not \in \{1,2,3\}{\mbox{)}}}
∫
d
x
x
(
a
x
+
b
)
=
−
1
b
ln
|
a
x
+
b
x
|
{\displaystyle \int {\frac {dx}{x(ax+b)}}=-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|}
∫
d
x
x
2
(
a
x
+
b
)
=
−
1
b
x
+
a
b
2
ln
|
a
x
+
b
x
|
{\displaystyle \int {\frac {dx}{x^{2}(ax+b)}}=-{\frac {1}{bx}}+{\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|}
∫
d
x
x
2
(
a
x
+
b
)
2
=
−
a
(
1
b
2
(
a
x
+
b
)
+
1
a
b
2
x
−
2
b
3
ln
|
a
x
+
b
x
|
)
{\displaystyle \int {\frac {dx}{x^{2}(ax+b)^{2}}}=-a\left({\frac {1}{b^{2}(ax+b)}}+{\frac {1}{ab^{2}x}}-{\frac {2}{b^{3}}}\ln \left|{\frac {ax+b}{x}}\right|\right)}
∫
d
x
x
2
+
a
2
=
1
a
arctan
x
a
{\displaystyle \int {\frac {dx}{x^{2}+a^{2}}}={\frac {1}{a}}\arctan {\frac {x}{a}}}
∫
d
x
x
2
−
a
2
=
−
1
a
a
r
t
a
n
h
x
a
=
1
2
a
ln
a
−
x
a
+
x
(para
|
x
|
<
|
a
|
)
{\displaystyle \int {\frac {dx}{x^{2}-a^{2}}}=-{\frac {1}{a}}\,\mathrm {artanh} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {a-x}{a+x}}\qquad {\mbox{(para }}|x|<|a|{\mbox{)}}}
∫
d
x
x
2
−
a
2
=
−
1
a
a
r
c
o
t
h
x
a
=
1
2
a
ln
x
−
a
x
+
a
(para
|
x
|
>
|
a
|
)
{\displaystyle \int {\frac {dx}{x^{2}-a^{2}}}=-{\frac {1}{a}}\,\mathrm {arcoth} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {x-a}{x+a}}\qquad {\mbox{(para }}|x|>|a|{\mbox{)}}}
∫
d
x
a
x
2
+
b
x
+
c
=
2
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
(para
4
a
c
−
b
2
>
0
)
{\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}={\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(para }}4ac-b^{2}>0{\mbox{)}}}
∫
d
x
a
x
2
+
b
x
+
c
=
2
b
2
−
4
a
c
a
r
t
a
n
h
2
a
x
+
b
b
2
−
4
a
c
=
1
b
2
−
4
a
c
ln
|
2
a
x
+
b
−
b
2
−
4
a
c
2
a
x
+
b
+
b
2
−
4
a
c
|
(para
4
a
c
−
b
2
<
0
)
{\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}={\frac {2}{\sqrt {b^{2}-4ac}}}\,\mathrm {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}={\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|\qquad {\mbox{(para }}4ac-b^{2}<0{\mbox{)}}}
∫
x
d
x
a
x
2
+
b
x
+
c
=
1
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
b
2
a
∫
d
x
a
x
2
+
b
x
+
c
{\displaystyle \int {\frac {x\;dx}{ax^{2}+bx+c}}={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {b}{2a}}\int {\frac {dx}{ax^{2}+bx+c}}}
∫
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
+
2
a
n
−
b
m
a
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
(para
4
a
c
−
b
2
>
0
)
{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(para }}4ac-b^{2}>0{\mbox{)}}}
∫
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
+
2
a
n
−
b
m
a
b
2
−
4
a
c
a
r
t
a
n
h
2
a
x
+
b
b
2
−
4
a
c
(para
4
a
c
−
b
2
<
0
)
{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\mathrm {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(para }}4ac-b^{2}<0{\mbox{)}}}
∫
d
x
(
a
x
2
+
b
x
+
c
)
n
=
2
a
x
+
b
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
+
(
2
n
−
3
)
2
a
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
d
x
(
a
x
2
+
b
x
+
c
)
n
−
1
{\displaystyle \int {\frac {dx}{(ax^{2}+bx+c)^{n}}}={\frac {2ax+b}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}+{\frac {(2n-3)2a}{(n-1)(4ac-b^{2})}}\int {\frac {dx}{(ax^{2}+bx+c)^{n-1}}}}
∫
x
d
x
(
a
x
2
+
b
x
+
c
)
n
=
b
x
+
2
c
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
−
b
(
2
n
−
3
)
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
d
x
(
a
x
2
+
b
x
+
c
)
n
−
1
{\displaystyle \int {\frac {x\;dx}{(ax^{2}+bx+c)^{n}}}={\frac {bx+2c}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}-{\frac {b(2n-3)}{(n-1)(4ac-b^{2})}}\int {\frac {dx}{(ax^{2}+bx+c)^{n-1}}}}
∫
d
x
x
(
a
x
2
+
b
x
+
c
)
=
1
2
c
ln
|
x
2
a
x
2
+
b
x
+
c
|
−
b
2
c
∫
d
x
a
x
2
+
b
x
+
c
{\displaystyle \int {\frac {dx}{x(ax^{2}+bx+c)}}={\frac {1}{2c}}\ln \left|{\frac {x^{2}}{ax^{2}+bx+c}}\right|-{\frac {b}{2c}}\int {\frac {dx}{ax^{2}+bx+c}}}
Categoría
:
Listas de matemáticas
Menú de navegación
Ferramentas persoais
Non accedeu ao sistema
Conversa
Contribucións
Crear unha conta
Acceder ao sistema
Espazos de nomes
Artigo
Conversa
galego
Vistas
Ler
Editar
Editar a fonte
Ver o historial
Máis
Procura
Navegación
Portada
Portal da comunidade
A Taberna
Actualidade
Cambios recentes
Artigos de calidade
Páxina aleatoria
Axuda
Doazóns
Ferramentas
Páxinas que ligan con esta
Cambios relacionados
Páxinas especiais
Ligazón permanente
Información da páxina
Citar esta páxina
Elemento de Wikidata
Imprimir/exportar
Crear un libro
Descargar como PDF
Versión para imprimir
Outras linguas
العربية
Bosanski
Català
کوردی
Čeština
Чӑвашла
English
Esperanto
Español
Euskara
فارسی
Français
हिन्दी
Hrvatski
Հայերեն
Bahasa Indonesia
Italiano
日本語
ភាសាខ្មែរ
한국어
Македонски
Nederlands
Português
Română
Русский
Srpskohrvatski / српскохрватски
Slovenščina
Српски / srpski
தமிழ்
Türkçe
Українська
Tiếng Việt
中文
Editar as ligazóns