Giuseppe Peano

Na Galipedia, a Wikipedia en galego.
Giuseppe Peano.jpg

Giuseppe Peano, nado preto de Spinetta (Piemonte) o 27 de agosto de 1858 e finado en Turín o 20 de abril de 1932, foi un matemático e filósofo italiano, coñecido polas súas contribucións á teoría de conxuntos. Peano publicou máis de douscentos libros e artigos, a maioría en matemáticas. A maior parte da súa vida dedicouna a ensinar en Turín.

Traxectoria[editar | editar a fonte]

Naceu nunha granxa preto da aldea de Spinetta, no Piemonte. Ingresou na próxima Universidade de Turín en 1876. Graduouse en 1880 con honores e comezou a súa carreira académica.

O 27 de xullo de 1887 casou con Carola Crosio.

Fitos e distincións[editar | editar a fonte]

  • 1881: publicación do seu primeiro artigo,
  • 1884: publicación de Calcolo Differenziale e Principii di Calcolo Integrale,
  • 1887: publicación de Applicazioni Geometriche del Calcolo Infinitesimale,
  • 1889: nomeado profesor de primeira clase na Academia Militar Real,
  • 1890: profesor extraordinario de Cálculo Infinitesimal na Universidad de Turín,
  • 1891: ingresa como membro a la Academia de Ciencia de Turín,
  • 1893: publicación de Lezioni di Analisi Infinitesimale (2 volúmenes),
  • 1895: promovido a profesor ordinario na Universidad de Turín,
  • 1901: cabaleiro da Orde de Santos Mauricio e Lázaro,
  • 1903: anuncio de Latino sine flexione,
  • 1905: cabaleiro do Reino de Italia, elixido como membro correspondente da Accademia dei Lincei en Roma, a maior honra para un científico italiano,
  • 1908: publicación de Formulario Mathematico (quinta e última edición do proxecto Formulario),
  • 1917: oficial do Reino de Italia,
  • 1921: ascendido de Oficial a Commendatore do Reino de Italia.

Carreira[editar | editar a fonte]

Comezou a súa carreira como asistente na Universidade de Turín en 1880. Primeiro foi axudante de Enrico D'Ovidio e logo de Angelo Genocchi, o xefe de cátedra en Cálculo infinitesimal. Pola fráxil saúde de Genocchi, Peano ditou os cursos de cálculo infinitesimal aos dous anos.

O seu primeiro traballo importante, un libro de texto sobre cálculo, foi atribuído a Genocchi e publicado en 1884. Tres anos despois, Peano publicou o seu primeiro libro sobre lóxica matemática. Este libro foi o primeiro en usar os símbolos modernos para a unión e intersección de conxuntos.

En 1886 comezou a ditar clases ao mesmo tempo na Academia Militar Real, e foi ascendido a profesor de primeira clase en 1889. Ao seguinte ano, a Universidade de Turín tamén lle outorgou un posto de profesor titular.

A famosa curva que enche o espazo ou curva de Peano apareceu en 1890 como un contraexemplo que usou para mostrar que unha curva continua non pode ser encerrada nunha rexión arbitrariamente pequena. Este foi un exemplo temperán do que se coñece como fractal.

Ao ano seguinte comezou o Proxecto Formulario. Debía ser unha Enciclopedia de Matemáticas, contendo todas as fórmulas coñecidas e os teoremas da ciencia matemática usando unha notación estándar inventada por el.

En 1897, levou a cabo a Congreso Internacional de Matemáticos en Zúric. Peano foi un participante clave, presentou un artigo sobre lóxica matemática. O tamén comezou a estar máis ocupado co Formulario en detrimento dos seus outros traballos.

En 1898 presentou unha nota á Academia achega do sistema de numeración binario e a súa capacidade para ser usado para representar os sons das linguas. O tamén se frustrou tanto coas demoras nas publicacións (polo seu pedido que as fórmulas sexan impresas nunha soa liña), que comprou unha imprenta.

París foi a sede da Segunda Conferencia Internacional de Matemáticas en 1900. A conferencia foi precedida pola primeira Conferencia Internacional de Filosofía onde Peano foi membro do comité de dirección. Presentou un artigo onde postulou a cuestión de definicións formadas correctamente en matemáticas, é dicir "Como se define unha definición?". Este pasou a ser un dos principais intereses filosóficos de Peano para o resto da súa vida. Na conferencia coñeceu a Bertrand Russell e entregoulle unha copia do Formulario. Russell quedou tan impresionado cos innovadores símbolos lóxicos que deixou a conferencia e regresou para estudar o texto de Peano.

Os discípulos de Peano presentaron artigos (usando os ensinos de Peano) nas conferencias matemáticas, con todo Peano non presentou ningún. Ditouse unha resolución para a formación dun "idioma internacional auxiliar" que faría máis fácil a difusión de novas ideas matemáticas (e comerciais), Peano apoiou plenamente esa idea.

Cara a 1901 estaba na cima da súa carreira matemática. Fixo avances nas áreas de análise, fundamentos e lóxica, realizou moitas contribucións ao ensino do cálculo e contribuíu nos campos de ecuacións diferenciais e análise vectorial. Xogou un rol central na axiomatización das matemáticas e foi un pioneiro no desenvolvemento da lóxica matemática. Peano estaba a esta altura moi involucrado co proxecto Formulario e as súas cátedras comezaron a sufrilo. De feito, estaba tan determinado a ensinar os seus novos símbolos matemáticos que non se prestaba atención ao cálculo nos seus cursos. Como resultado, foi despedido da Academia Militar Real, pero retivo o seu posto na Universidade de Turín.

En 1903 anunciou o seu traballo nun idioma auxiliar internacional chamado Latino sine flexione ("Latín sen inflexións," despois chamado Interlingua). Este foi un proxecto importante para el (xunto co encontro de colaboradores para o Formulario). A idea era usar un vocabulario latino, dado que era amplamente coñecido, pero simplificar a gramática tanto como fose posible e eliminar todas as irregularidades e as formas anómalas para facelo máis fácil de aprender. Nun discurso brillante, comezou falando en latín e, a medida que describía cada simplificación, introducíaas no discurso de maneira que ao final estaba falando nese novo idioma.

1908 foi un grande ano para Peano. A última, a quinta edición do Proxecto Formulario, titulado Formulario Mathematico, foi publicado. Contiña 4200 fórmulas e teoremas, todos completamente enunciados e a maioría probados. O libro recibiu pouca atención dado que moito do seu contido era vello nese momento. Os comentarios e exemplos estaban escritos en Latino sine flexione, o cal diminuíu o interese da maioría dos matemáticos; con todo, permanece como unha contribución significativa á literatura matemática.

Tamén en 1908 tomou a cátedra de análise superior en Turín (este nomeamento só durou dous anos). Foi elixido o director da Academia prol Interlingua. Habendo creado previamente o Idioma Neutral, a Academia elixiu abandonalo en favor do Latino sine flexione de Peano.

Despois de que a súa nai morreu en 1910, Peano dividiu o seu tempo entre o ensino, traballando en textos orientados á escola secundaria (incluíndo un dicionario de matemáticas) e desenvolvendo e promovendo idiomas artificiais del e doutros, chegado a ser un membro reverenciado do movemento internacional de idiomas auxiliares. O usou o seu membrecía na Accademia dei Lincei para presentar artigos escritos por amigos e colegas que non eran membros (a Accademia rexistraba e publicaba todos os artigos presentados durante as sesións).

En 1925 cambiou informalmente de cátedra de Cálculo Infinitesimal a Matemáticas Complementarias, un campo que se axustaba máis ao seu estilo de matemáticas. Esta mudanza oficializouse en 1931. Continuou ensinando na Universidade de Turín ata un día antes da súa morte, o 20 de abril de 1932, cando sufriu un ataque cardíaco.

"El [Peano] foi un home a quen admirei moito desde o momento en que o coñecín por primeira vez en 1900 no Congreso de Filosofía, á que el dominaba pola exactitude da súa mente." Bertrand Russell, 1932.

Este personaxe tivo a coraxe de arrasar con toda a lóxica anterior dos personaxes medievais.

Véxase tamén[editar | editar a fonte]

Commons
Commons ten máis contidos multimedia sobre: Giuseppe Peano

Outros artigos[editar | editar a fonte]

Ligazóns externas[editar | editar a fonte]