Número enteiro

Na Galipedia, a Wikipedia en galego.
(Redirixido desde "Enteiro")
Sistema numérico en matemáticas.
Elementais

\mathbb{N} Naturais {0,1,2,3...}

\mathbb{Z} Enteiros {...-2,-1,0,+1,+2,...}

\mathbb{Q} Racionais { \mathbb{Z} , 1/2 , -33/7 , etc.}
\mathbb{R} Reais {\mathbb{Z} , \mathbb{Q} , \mathrm{i} , \mathrm{Tr}}

\sqrt{3},\sqrt[3]{1/7},11^{-5}, etc}

\mathrm{i} Unidade imaxinaria = \sqrt{-1}
\mathbb{C} Números complexos {\mathbb{R} , \mathrm{i}},
Infinito

Extensións dos números complexos

Bicomplexos
Hipercomplexos
{\mathbb{R},i,j,k} Cuaternións ~i2=j2=k2=ijk=-1
Octonións
Sedenións
Superreais
Hiperreais
Surreais

Especiais

Nominais
Ordinais {1o,2o,...} (de orde)
Cardinais {\aleph_1, \aleph_2, \aleph_3, \cdots}

Outros importantes

Secuencias de enteiros
Constantes matemáticas
Lista de números
Números grandes

Sistemas de numeración

Os enteiros, ou números enteiros, inclúen os números naturais (1, 2, 3, ...), os seus opostos (números enteiros negativos -1, -2, -3, ...) e mais o número 0.

Tamén se pode definir o conxunto dos números enteiros como o subconxunto dos números reais nos que a parte fraccionaria vale cero.

O conxunto de todos os enteiros represéntase como Z (máis apropiadamente, \mathbb{Z}), que ven de Zahlen (do alemán, "número").

Os números enteiros poden adicionarse ou subtraerse, multiplicarse e mais compararse. A principal razón da existencia dos números negativos é que fai posíbel resolver todas as ecuacións de primeiro grao (coa forma ax + b = 0). Para a incógnita x; nos números naturais apenas algunhas destas ecuacións eran solúbeis.

Os matemáticos expresan o feito de que todas as leis usuais da aritmética son válidas nos enteiros dicindo que (Z, +, *) é un anel conmutativo.

A orde de Z dáse por ... < -2 < -1 < 0 < 1 < 2 < ... e fai de Z unha ordenación total sen limite superior ou inferior. Chámaselle a un enteiro positivo se é maior que cero ; o propio cero non se considera un positivo. A orde é compatíbel coas operacións alxébricas no seguinte sentido:

  1. se a < b e c < d, entón a + c < b + d
  2. se a < b e 0 < c, entón ac < bc

Como os números naturais, os enteiros forman un conxunto infinito contábel.

Os enteiros non forman un corpo xa que, por exemplo, non existe un enteiro x tal que 2x = 1. O menor corpo que contén os enteiros son os números racionais.

Unha importante propiedade dos enteiros é a división con resto: dados dous enteiros a e b con b≠0, podemos sempre achar enteiros q e r tales que:a = b q + r e tal que 0 <= r < |b| (vexa módulo ou valor absoluto). q chámase o cociente e r o resto da división de a por b. Os números q e r son unicamente determinados por a e b. Esta división torna posíbel o Algoritmo Euclidiano para calcular o máximo divisor común, que tamén mostra que o máximo divisor común de dous enteiros pode ser escrito como a suma de múltiplos destes dous enteiros.

Todo isto pode ser resumido dicindo que Z é un Dominio Euclidiano. isto implica que Z é un dominio de ideal principal e que todo número enteiro poden ser escrito como produto de números primos de forma única (desde que o 1 non sexa considerado primo). Este é o Teorema Fundamental da Aritmética.

O ramo da matemática que estuda os enteiros chámase de teoría dos números.

Un enteiro é frecuentemente un tipo primitivo en linguaxe de programación normalmente con 1, 2, 4, ou 8 bytes de lonxitude (8, 16, 32, ou 64 bits). Observe, porén que un computador pode apenas representar un subconxunto dos enteiros con estes tipos, xa que os enteiros son infinitos e unha cantidade de bits fixa limita a representación a un máximo de 2 á potencia do numero de bits (2^8 para bytes, 2^32 para arquitecturas de 32-bit, etc).